867 lines
23 KiB
C
867 lines
23 KiB
C
|
/*
|
||
|
* Copyright (C) 1994 Linus Torvalds
|
||
|
*
|
||
|
* 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
|
||
|
* stack - Manfred Spraul <manfred@colorfullife.com>
|
||
|
*
|
||
|
* 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
|
||
|
* them correctly. Now the emulation will be in a
|
||
|
* consistent state after stackfaults - Kasper Dupont
|
||
|
* <kasperd@daimi.au.dk>
|
||
|
*
|
||
|
* 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
|
||
|
* <kasperd@daimi.au.dk>
|
||
|
*
|
||
|
* ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
|
||
|
* caused by Kasper Dupont's changes - Stas Sergeev
|
||
|
*
|
||
|
* 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
|
||
|
* Kasper Dupont <kasperd@daimi.au.dk>
|
||
|
*
|
||
|
* 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
|
||
|
* Kasper Dupont <kasperd@daimi.au.dk>
|
||
|
*
|
||
|
* 9 apr 2002 - Changed stack access macros to jump to a label
|
||
|
* instead of returning to userspace. This simplifies
|
||
|
* do_int, and is needed by handle_vm6_fault. Kasper
|
||
|
* Dupont <kasperd@daimi.au.dk>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/capability.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/syscalls.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/ptrace.h>
|
||
|
#include <linux/audit.h>
|
||
|
#include <linux/stddef.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/security.h>
|
||
|
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include <asm/irq.h>
|
||
|
#include <asm/traps.h>
|
||
|
#include <asm/vm86.h>
|
||
|
|
||
|
/*
|
||
|
* Known problems:
|
||
|
*
|
||
|
* Interrupt handling is not guaranteed:
|
||
|
* - a real x86 will disable all interrupts for one instruction
|
||
|
* after a "mov ss,xx" to make stack handling atomic even without
|
||
|
* the 'lss' instruction. We can't guarantee this in v86 mode,
|
||
|
* as the next instruction might result in a page fault or similar.
|
||
|
* - a real x86 will have interrupts disabled for one instruction
|
||
|
* past the 'sti' that enables them. We don't bother with all the
|
||
|
* details yet.
|
||
|
*
|
||
|
* Let's hope these problems do not actually matter for anything.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
* 8- and 16-bit register defines..
|
||
|
*/
|
||
|
#define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
|
||
|
#define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
|
||
|
#define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
|
||
|
#define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
|
||
|
|
||
|
/*
|
||
|
* virtual flags (16 and 32-bit versions)
|
||
|
*/
|
||
|
#define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
|
||
|
#define VEFLAGS (current->thread.vm86->veflags)
|
||
|
|
||
|
#define set_flags(X, new, mask) \
|
||
|
((X) = ((X) & ~(mask)) | ((new) & (mask)))
|
||
|
|
||
|
#define SAFE_MASK (0xDD5)
|
||
|
#define RETURN_MASK (0xDFF)
|
||
|
|
||
|
void save_v86_state(struct kernel_vm86_regs *regs, int retval)
|
||
|
{
|
||
|
struct tss_struct *tss;
|
||
|
struct task_struct *tsk = current;
|
||
|
struct vm86plus_struct __user *user;
|
||
|
struct vm86 *vm86 = current->thread.vm86;
|
||
|
long err = 0;
|
||
|
|
||
|
/*
|
||
|
* This gets called from entry.S with interrupts disabled, but
|
||
|
* from process context. Enable interrupts here, before trying
|
||
|
* to access user space.
|
||
|
*/
|
||
|
local_irq_enable();
|
||
|
|
||
|
if (!vm86 || !vm86->user_vm86) {
|
||
|
pr_alert("no user_vm86: BAD\n");
|
||
|
do_exit(SIGSEGV);
|
||
|
}
|
||
|
set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
|
||
|
user = vm86->user_vm86;
|
||
|
|
||
|
if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
|
||
|
sizeof(struct vm86plus_struct) :
|
||
|
sizeof(struct vm86_struct))) {
|
||
|
pr_alert("could not access userspace vm86 info\n");
|
||
|
do_exit(SIGSEGV);
|
||
|
}
|
||
|
|
||
|
put_user_try {
|
||
|
put_user_ex(regs->pt.bx, &user->regs.ebx);
|
||
|
put_user_ex(regs->pt.cx, &user->regs.ecx);
|
||
|
put_user_ex(regs->pt.dx, &user->regs.edx);
|
||
|
put_user_ex(regs->pt.si, &user->regs.esi);
|
||
|
put_user_ex(regs->pt.di, &user->regs.edi);
|
||
|
put_user_ex(regs->pt.bp, &user->regs.ebp);
|
||
|
put_user_ex(regs->pt.ax, &user->regs.eax);
|
||
|
put_user_ex(regs->pt.ip, &user->regs.eip);
|
||
|
put_user_ex(regs->pt.cs, &user->regs.cs);
|
||
|
put_user_ex(regs->pt.flags, &user->regs.eflags);
|
||
|
put_user_ex(regs->pt.sp, &user->regs.esp);
|
||
|
put_user_ex(regs->pt.ss, &user->regs.ss);
|
||
|
put_user_ex(regs->es, &user->regs.es);
|
||
|
put_user_ex(regs->ds, &user->regs.ds);
|
||
|
put_user_ex(regs->fs, &user->regs.fs);
|
||
|
put_user_ex(regs->gs, &user->regs.gs);
|
||
|
|
||
|
put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
|
||
|
} put_user_catch(err);
|
||
|
if (err) {
|
||
|
pr_alert("could not access userspace vm86 info\n");
|
||
|
do_exit(SIGSEGV);
|
||
|
}
|
||
|
|
||
|
tss = &per_cpu(cpu_tss, get_cpu());
|
||
|
tsk->thread.sp0 = vm86->saved_sp0;
|
||
|
tsk->thread.sysenter_cs = __KERNEL_CS;
|
||
|
load_sp0(tss, &tsk->thread);
|
||
|
vm86->saved_sp0 = 0;
|
||
|
put_cpu();
|
||
|
|
||
|
memcpy(®s->pt, &vm86->regs32, sizeof(struct pt_regs));
|
||
|
|
||
|
lazy_load_gs(vm86->regs32.gs);
|
||
|
|
||
|
regs->pt.ax = retval;
|
||
|
}
|
||
|
|
||
|
static void mark_screen_rdonly(struct mm_struct *mm)
|
||
|
{
|
||
|
struct vm_area_struct *vma;
|
||
|
spinlock_t *ptl;
|
||
|
pgd_t *pgd;
|
||
|
pud_t *pud;
|
||
|
pmd_t *pmd;
|
||
|
pte_t *pte;
|
||
|
int i;
|
||
|
|
||
|
down_write(&mm->mmap_sem);
|
||
|
pgd = pgd_offset(mm, 0xA0000);
|
||
|
if (pgd_none_or_clear_bad(pgd))
|
||
|
goto out;
|
||
|
pud = pud_offset(pgd, 0xA0000);
|
||
|
if (pud_none_or_clear_bad(pud))
|
||
|
goto out;
|
||
|
pmd = pmd_offset(pud, 0xA0000);
|
||
|
|
||
|
if (pmd_trans_huge(*pmd)) {
|
||
|
vma = find_vma(mm, 0xA0000);
|
||
|
split_huge_pmd(vma, pmd, 0xA0000);
|
||
|
}
|
||
|
if (pmd_none_or_clear_bad(pmd))
|
||
|
goto out;
|
||
|
pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
|
||
|
for (i = 0; i < 32; i++) {
|
||
|
if (pte_present(*pte))
|
||
|
set_pte(pte, pte_wrprotect(*pte));
|
||
|
pte++;
|
||
|
}
|
||
|
pte_unmap_unlock(pte, ptl);
|
||
|
out:
|
||
|
up_write(&mm->mmap_sem);
|
||
|
flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static int do_vm86_irq_handling(int subfunction, int irqnumber);
|
||
|
static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
|
||
|
|
||
|
SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
|
||
|
{
|
||
|
return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
|
||
|
}
|
||
|
|
||
|
|
||
|
SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
|
||
|
{
|
||
|
switch (cmd) {
|
||
|
case VM86_REQUEST_IRQ:
|
||
|
case VM86_FREE_IRQ:
|
||
|
case VM86_GET_IRQ_BITS:
|
||
|
case VM86_GET_AND_RESET_IRQ:
|
||
|
return do_vm86_irq_handling(cmd, (int)arg);
|
||
|
case VM86_PLUS_INSTALL_CHECK:
|
||
|
/*
|
||
|
* NOTE: on old vm86 stuff this will return the error
|
||
|
* from access_ok(), because the subfunction is
|
||
|
* interpreted as (invalid) address to vm86_struct.
|
||
|
* So the installation check works.
|
||
|
*/
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
|
||
|
return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
|
||
|
}
|
||
|
|
||
|
|
||
|
static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
|
||
|
{
|
||
|
struct tss_struct *tss;
|
||
|
struct task_struct *tsk = current;
|
||
|
struct vm86 *vm86 = tsk->thread.vm86;
|
||
|
struct kernel_vm86_regs vm86regs;
|
||
|
struct pt_regs *regs = current_pt_regs();
|
||
|
unsigned long err = 0;
|
||
|
|
||
|
err = security_mmap_addr(0);
|
||
|
if (err) {
|
||
|
/*
|
||
|
* vm86 cannot virtualize the address space, so vm86 users
|
||
|
* need to manage the low 1MB themselves using mmap. Given
|
||
|
* that BIOS places important data in the first page, vm86
|
||
|
* is essentially useless if mmap_min_addr != 0. DOSEMU,
|
||
|
* for example, won't even bother trying to use vm86 if it
|
||
|
* can't map a page at virtual address 0.
|
||
|
*
|
||
|
* To reduce the available kernel attack surface, simply
|
||
|
* disallow vm86(old) for users who cannot mmap at va 0.
|
||
|
*
|
||
|
* The implementation of security_mmap_addr will allow
|
||
|
* suitably privileged users to map va 0 even if
|
||
|
* vm.mmap_min_addr is set above 0, and we want this
|
||
|
* behavior for vm86 as well, as it ensures that legacy
|
||
|
* tools like vbetool will not fail just because of
|
||
|
* vm.mmap_min_addr.
|
||
|
*/
|
||
|
pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
|
||
|
current->comm, task_pid_nr(current),
|
||
|
from_kuid_munged(&init_user_ns, current_uid()));
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
if (!vm86) {
|
||
|
if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
|
||
|
return -ENOMEM;
|
||
|
tsk->thread.vm86 = vm86;
|
||
|
}
|
||
|
if (vm86->saved_sp0)
|
||
|
return -EPERM;
|
||
|
|
||
|
if (!access_ok(VERIFY_READ, user_vm86, plus ?
|
||
|
sizeof(struct vm86_struct) :
|
||
|
sizeof(struct vm86plus_struct)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
memset(&vm86regs, 0, sizeof(vm86regs));
|
||
|
get_user_try {
|
||
|
unsigned short seg;
|
||
|
get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
|
||
|
get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
|
||
|
get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
|
||
|
get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
|
||
|
get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
|
||
|
get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
|
||
|
get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
|
||
|
get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
|
||
|
get_user_ex(seg, &user_vm86->regs.cs);
|
||
|
vm86regs.pt.cs = seg;
|
||
|
get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
|
||
|
get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
|
||
|
get_user_ex(seg, &user_vm86->regs.ss);
|
||
|
vm86regs.pt.ss = seg;
|
||
|
get_user_ex(vm86regs.es, &user_vm86->regs.es);
|
||
|
get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
|
||
|
get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
|
||
|
get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
|
||
|
|
||
|
get_user_ex(vm86->flags, &user_vm86->flags);
|
||
|
get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
|
||
|
get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
|
||
|
} get_user_catch(err);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
if (copy_from_user(&vm86->int_revectored,
|
||
|
&user_vm86->int_revectored,
|
||
|
sizeof(struct revectored_struct)))
|
||
|
return -EFAULT;
|
||
|
if (copy_from_user(&vm86->int21_revectored,
|
||
|
&user_vm86->int21_revectored,
|
||
|
sizeof(struct revectored_struct)))
|
||
|
return -EFAULT;
|
||
|
if (plus) {
|
||
|
if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
|
||
|
sizeof(struct vm86plus_info_struct)))
|
||
|
return -EFAULT;
|
||
|
vm86->vm86plus.is_vm86pus = 1;
|
||
|
} else
|
||
|
memset(&vm86->vm86plus, 0,
|
||
|
sizeof(struct vm86plus_info_struct));
|
||
|
|
||
|
memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
|
||
|
vm86->user_vm86 = user_vm86;
|
||
|
|
||
|
/*
|
||
|
* The flags register is also special: we cannot trust that the user
|
||
|
* has set it up safely, so this makes sure interrupt etc flags are
|
||
|
* inherited from protected mode.
|
||
|
*/
|
||
|
VEFLAGS = vm86regs.pt.flags;
|
||
|
vm86regs.pt.flags &= SAFE_MASK;
|
||
|
vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
|
||
|
vm86regs.pt.flags |= X86_VM_MASK;
|
||
|
|
||
|
vm86regs.pt.orig_ax = regs->orig_ax;
|
||
|
|
||
|
switch (vm86->cpu_type) {
|
||
|
case CPU_286:
|
||
|
vm86->veflags_mask = 0;
|
||
|
break;
|
||
|
case CPU_386:
|
||
|
vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
|
||
|
break;
|
||
|
case CPU_486:
|
||
|
vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
|
||
|
break;
|
||
|
default:
|
||
|
vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Save old state
|
||
|
*/
|
||
|
vm86->saved_sp0 = tsk->thread.sp0;
|
||
|
lazy_save_gs(vm86->regs32.gs);
|
||
|
|
||
|
tss = &per_cpu(cpu_tss, get_cpu());
|
||
|
/* make room for real-mode segments */
|
||
|
tsk->thread.sp0 += 16;
|
||
|
|
||
|
if (static_cpu_has(X86_FEATURE_SEP))
|
||
|
tsk->thread.sysenter_cs = 0;
|
||
|
|
||
|
load_sp0(tss, &tsk->thread);
|
||
|
put_cpu();
|
||
|
|
||
|
if (vm86->flags & VM86_SCREEN_BITMAP)
|
||
|
mark_screen_rdonly(tsk->mm);
|
||
|
|
||
|
memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
|
||
|
force_iret();
|
||
|
return regs->ax;
|
||
|
}
|
||
|
|
||
|
static inline void set_IF(struct kernel_vm86_regs *regs)
|
||
|
{
|
||
|
VEFLAGS |= X86_EFLAGS_VIF;
|
||
|
}
|
||
|
|
||
|
static inline void clear_IF(struct kernel_vm86_regs *regs)
|
||
|
{
|
||
|
VEFLAGS &= ~X86_EFLAGS_VIF;
|
||
|
}
|
||
|
|
||
|
static inline void clear_TF(struct kernel_vm86_regs *regs)
|
||
|
{
|
||
|
regs->pt.flags &= ~X86_EFLAGS_TF;
|
||
|
}
|
||
|
|
||
|
static inline void clear_AC(struct kernel_vm86_regs *regs)
|
||
|
{
|
||
|
regs->pt.flags &= ~X86_EFLAGS_AC;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* It is correct to call set_IF(regs) from the set_vflags_*
|
||
|
* functions. However someone forgot to call clear_IF(regs)
|
||
|
* in the opposite case.
|
||
|
* After the command sequence CLI PUSHF STI POPF you should
|
||
|
* end up with interrupts disabled, but you ended up with
|
||
|
* interrupts enabled.
|
||
|
* ( I was testing my own changes, but the only bug I
|
||
|
* could find was in a function I had not changed. )
|
||
|
* [KD]
|
||
|
*/
|
||
|
|
||
|
static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
|
||
|
{
|
||
|
set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
|
||
|
set_flags(regs->pt.flags, flags, SAFE_MASK);
|
||
|
if (flags & X86_EFLAGS_IF)
|
||
|
set_IF(regs);
|
||
|
else
|
||
|
clear_IF(regs);
|
||
|
}
|
||
|
|
||
|
static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
|
||
|
{
|
||
|
set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
|
||
|
set_flags(regs->pt.flags, flags, SAFE_MASK);
|
||
|
if (flags & X86_EFLAGS_IF)
|
||
|
set_IF(regs);
|
||
|
else
|
||
|
clear_IF(regs);
|
||
|
}
|
||
|
|
||
|
static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
|
||
|
{
|
||
|
unsigned long flags = regs->pt.flags & RETURN_MASK;
|
||
|
|
||
|
if (VEFLAGS & X86_EFLAGS_VIF)
|
||
|
flags |= X86_EFLAGS_IF;
|
||
|
flags |= X86_EFLAGS_IOPL;
|
||
|
return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
|
||
|
}
|
||
|
|
||
|
static inline int is_revectored(int nr, struct revectored_struct *bitmap)
|
||
|
{
|
||
|
return test_bit(nr, bitmap->__map);
|
||
|
}
|
||
|
|
||
|
#define val_byte(val, n) (((__u8 *)&val)[n])
|
||
|
|
||
|
#define pushb(base, ptr, val, err_label) \
|
||
|
do { \
|
||
|
__u8 __val = val; \
|
||
|
ptr--; \
|
||
|
if (put_user(__val, base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
} while (0)
|
||
|
|
||
|
#define pushw(base, ptr, val, err_label) \
|
||
|
do { \
|
||
|
__u16 __val = val; \
|
||
|
ptr--; \
|
||
|
if (put_user(val_byte(__val, 1), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr--; \
|
||
|
if (put_user(val_byte(__val, 0), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
} while (0)
|
||
|
|
||
|
#define pushl(base, ptr, val, err_label) \
|
||
|
do { \
|
||
|
__u32 __val = val; \
|
||
|
ptr--; \
|
||
|
if (put_user(val_byte(__val, 3), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr--; \
|
||
|
if (put_user(val_byte(__val, 2), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr--; \
|
||
|
if (put_user(val_byte(__val, 1), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr--; \
|
||
|
if (put_user(val_byte(__val, 0), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
} while (0)
|
||
|
|
||
|
#define popb(base, ptr, err_label) \
|
||
|
({ \
|
||
|
__u8 __res; \
|
||
|
if (get_user(__res, base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr++; \
|
||
|
__res; \
|
||
|
})
|
||
|
|
||
|
#define popw(base, ptr, err_label) \
|
||
|
({ \
|
||
|
__u16 __res; \
|
||
|
if (get_user(val_byte(__res, 0), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr++; \
|
||
|
if (get_user(val_byte(__res, 1), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr++; \
|
||
|
__res; \
|
||
|
})
|
||
|
|
||
|
#define popl(base, ptr, err_label) \
|
||
|
({ \
|
||
|
__u32 __res; \
|
||
|
if (get_user(val_byte(__res, 0), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr++; \
|
||
|
if (get_user(val_byte(__res, 1), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr++; \
|
||
|
if (get_user(val_byte(__res, 2), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr++; \
|
||
|
if (get_user(val_byte(__res, 3), base + ptr) < 0) \
|
||
|
goto err_label; \
|
||
|
ptr++; \
|
||
|
__res; \
|
||
|
})
|
||
|
|
||
|
/* There are so many possible reasons for this function to return
|
||
|
* VM86_INTx, so adding another doesn't bother me. We can expect
|
||
|
* userspace programs to be able to handle it. (Getting a problem
|
||
|
* in userspace is always better than an Oops anyway.) [KD]
|
||
|
*/
|
||
|
static void do_int(struct kernel_vm86_regs *regs, int i,
|
||
|
unsigned char __user *ssp, unsigned short sp)
|
||
|
{
|
||
|
unsigned long __user *intr_ptr;
|
||
|
unsigned long segoffs;
|
||
|
struct vm86 *vm86 = current->thread.vm86;
|
||
|
|
||
|
if (regs->pt.cs == BIOSSEG)
|
||
|
goto cannot_handle;
|
||
|
if (is_revectored(i, &vm86->int_revectored))
|
||
|
goto cannot_handle;
|
||
|
if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
|
||
|
goto cannot_handle;
|
||
|
intr_ptr = (unsigned long __user *) (i << 2);
|
||
|
if (get_user(segoffs, intr_ptr))
|
||
|
goto cannot_handle;
|
||
|
if ((segoffs >> 16) == BIOSSEG)
|
||
|
goto cannot_handle;
|
||
|
pushw(ssp, sp, get_vflags(regs), cannot_handle);
|
||
|
pushw(ssp, sp, regs->pt.cs, cannot_handle);
|
||
|
pushw(ssp, sp, IP(regs), cannot_handle);
|
||
|
regs->pt.cs = segoffs >> 16;
|
||
|
SP(regs) -= 6;
|
||
|
IP(regs) = segoffs & 0xffff;
|
||
|
clear_TF(regs);
|
||
|
clear_IF(regs);
|
||
|
clear_AC(regs);
|
||
|
return;
|
||
|
|
||
|
cannot_handle:
|
||
|
save_v86_state(regs, VM86_INTx + (i << 8));
|
||
|
}
|
||
|
|
||
|
int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
|
||
|
{
|
||
|
struct vm86 *vm86 = current->thread.vm86;
|
||
|
|
||
|
if (vm86->vm86plus.is_vm86pus) {
|
||
|
if ((trapno == 3) || (trapno == 1)) {
|
||
|
save_v86_state(regs, VM86_TRAP + (trapno << 8));
|
||
|
return 0;
|
||
|
}
|
||
|
do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
|
||
|
return 0;
|
||
|
}
|
||
|
if (trapno != 1)
|
||
|
return 1; /* we let this handle by the calling routine */
|
||
|
current->thread.trap_nr = trapno;
|
||
|
current->thread.error_code = error_code;
|
||
|
force_sig(SIGTRAP, current);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
|
||
|
{
|
||
|
unsigned char opcode;
|
||
|
unsigned char __user *csp;
|
||
|
unsigned char __user *ssp;
|
||
|
unsigned short ip, sp, orig_flags;
|
||
|
int data32, pref_done;
|
||
|
struct vm86plus_info_struct *vmpi = ¤t->thread.vm86->vm86plus;
|
||
|
|
||
|
#define CHECK_IF_IN_TRAP \
|
||
|
if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
|
||
|
newflags |= X86_EFLAGS_TF
|
||
|
|
||
|
orig_flags = *(unsigned short *)®s->pt.flags;
|
||
|
|
||
|
csp = (unsigned char __user *) (regs->pt.cs << 4);
|
||
|
ssp = (unsigned char __user *) (regs->pt.ss << 4);
|
||
|
sp = SP(regs);
|
||
|
ip = IP(regs);
|
||
|
|
||
|
data32 = 0;
|
||
|
pref_done = 0;
|
||
|
do {
|
||
|
switch (opcode = popb(csp, ip, simulate_sigsegv)) {
|
||
|
case 0x66: /* 32-bit data */ data32 = 1; break;
|
||
|
case 0x67: /* 32-bit address */ break;
|
||
|
case 0x2e: /* CS */ break;
|
||
|
case 0x3e: /* DS */ break;
|
||
|
case 0x26: /* ES */ break;
|
||
|
case 0x36: /* SS */ break;
|
||
|
case 0x65: /* GS */ break;
|
||
|
case 0x64: /* FS */ break;
|
||
|
case 0xf2: /* repnz */ break;
|
||
|
case 0xf3: /* rep */ break;
|
||
|
default: pref_done = 1;
|
||
|
}
|
||
|
} while (!pref_done);
|
||
|
|
||
|
switch (opcode) {
|
||
|
|
||
|
/* pushf */
|
||
|
case 0x9c:
|
||
|
if (data32) {
|
||
|
pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
|
||
|
SP(regs) -= 4;
|
||
|
} else {
|
||
|
pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
|
||
|
SP(regs) -= 2;
|
||
|
}
|
||
|
IP(regs) = ip;
|
||
|
goto vm86_fault_return;
|
||
|
|
||
|
/* popf */
|
||
|
case 0x9d:
|
||
|
{
|
||
|
unsigned long newflags;
|
||
|
if (data32) {
|
||
|
newflags = popl(ssp, sp, simulate_sigsegv);
|
||
|
SP(regs) += 4;
|
||
|
} else {
|
||
|
newflags = popw(ssp, sp, simulate_sigsegv);
|
||
|
SP(regs) += 2;
|
||
|
}
|
||
|
IP(regs) = ip;
|
||
|
CHECK_IF_IN_TRAP;
|
||
|
if (data32)
|
||
|
set_vflags_long(newflags, regs);
|
||
|
else
|
||
|
set_vflags_short(newflags, regs);
|
||
|
|
||
|
goto check_vip;
|
||
|
}
|
||
|
|
||
|
/* int xx */
|
||
|
case 0xcd: {
|
||
|
int intno = popb(csp, ip, simulate_sigsegv);
|
||
|
IP(regs) = ip;
|
||
|
if (vmpi->vm86dbg_active) {
|
||
|
if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
|
||
|
save_v86_state(regs, VM86_INTx + (intno << 8));
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
do_int(regs, intno, ssp, sp);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* iret */
|
||
|
case 0xcf:
|
||
|
{
|
||
|
unsigned long newip;
|
||
|
unsigned long newcs;
|
||
|
unsigned long newflags;
|
||
|
if (data32) {
|
||
|
newip = popl(ssp, sp, simulate_sigsegv);
|
||
|
newcs = popl(ssp, sp, simulate_sigsegv);
|
||
|
newflags = popl(ssp, sp, simulate_sigsegv);
|
||
|
SP(regs) += 12;
|
||
|
} else {
|
||
|
newip = popw(ssp, sp, simulate_sigsegv);
|
||
|
newcs = popw(ssp, sp, simulate_sigsegv);
|
||
|
newflags = popw(ssp, sp, simulate_sigsegv);
|
||
|
SP(regs) += 6;
|
||
|
}
|
||
|
IP(regs) = newip;
|
||
|
regs->pt.cs = newcs;
|
||
|
CHECK_IF_IN_TRAP;
|
||
|
if (data32) {
|
||
|
set_vflags_long(newflags, regs);
|
||
|
} else {
|
||
|
set_vflags_short(newflags, regs);
|
||
|
}
|
||
|
goto check_vip;
|
||
|
}
|
||
|
|
||
|
/* cli */
|
||
|
case 0xfa:
|
||
|
IP(regs) = ip;
|
||
|
clear_IF(regs);
|
||
|
goto vm86_fault_return;
|
||
|
|
||
|
/* sti */
|
||
|
/*
|
||
|
* Damn. This is incorrect: the 'sti' instruction should actually
|
||
|
* enable interrupts after the /next/ instruction. Not good.
|
||
|
*
|
||
|
* Probably needs some horsing around with the TF flag. Aiee..
|
||
|
*/
|
||
|
case 0xfb:
|
||
|
IP(regs) = ip;
|
||
|
set_IF(regs);
|
||
|
goto check_vip;
|
||
|
|
||
|
default:
|
||
|
save_v86_state(regs, VM86_UNKNOWN);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
|
||
|
check_vip:
|
||
|
if ((VEFLAGS & (X86_EFLAGS_VIP | X86_EFLAGS_VIF)) ==
|
||
|
(X86_EFLAGS_VIP | X86_EFLAGS_VIF)) {
|
||
|
save_v86_state(regs, VM86_STI);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
vm86_fault_return:
|
||
|
if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
|
||
|
save_v86_state(regs, VM86_PICRETURN);
|
||
|
return;
|
||
|
}
|
||
|
if (orig_flags & X86_EFLAGS_TF)
|
||
|
handle_vm86_trap(regs, 0, X86_TRAP_DB);
|
||
|
return;
|
||
|
|
||
|
simulate_sigsegv:
|
||
|
/* FIXME: After a long discussion with Stas we finally
|
||
|
* agreed, that this is wrong. Here we should
|
||
|
* really send a SIGSEGV to the user program.
|
||
|
* But how do we create the correct context? We
|
||
|
* are inside a general protection fault handler
|
||
|
* and has just returned from a page fault handler.
|
||
|
* The correct context for the signal handler
|
||
|
* should be a mixture of the two, but how do we
|
||
|
* get the information? [KD]
|
||
|
*/
|
||
|
save_v86_state(regs, VM86_UNKNOWN);
|
||
|
}
|
||
|
|
||
|
/* ---------------- vm86 special IRQ passing stuff ----------------- */
|
||
|
|
||
|
#define VM86_IRQNAME "vm86irq"
|
||
|
|
||
|
static struct vm86_irqs {
|
||
|
struct task_struct *tsk;
|
||
|
int sig;
|
||
|
} vm86_irqs[16];
|
||
|
|
||
|
static DEFINE_SPINLOCK(irqbits_lock);
|
||
|
static int irqbits;
|
||
|
|
||
|
#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
|
||
|
| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
|
||
|
| (1 << SIGUNUSED))
|
||
|
|
||
|
static irqreturn_t irq_handler(int intno, void *dev_id)
|
||
|
{
|
||
|
int irq_bit;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&irqbits_lock, flags);
|
||
|
irq_bit = 1 << intno;
|
||
|
if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
|
||
|
goto out;
|
||
|
irqbits |= irq_bit;
|
||
|
if (vm86_irqs[intno].sig)
|
||
|
send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
|
||
|
/*
|
||
|
* IRQ will be re-enabled when user asks for the irq (whether
|
||
|
* polling or as a result of the signal)
|
||
|
*/
|
||
|
disable_irq_nosync(intno);
|
||
|
spin_unlock_irqrestore(&irqbits_lock, flags);
|
||
|
return IRQ_HANDLED;
|
||
|
|
||
|
out:
|
||
|
spin_unlock_irqrestore(&irqbits_lock, flags);
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
static inline void free_vm86_irq(int irqnumber)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
free_irq(irqnumber, NULL);
|
||
|
vm86_irqs[irqnumber].tsk = NULL;
|
||
|
|
||
|
spin_lock_irqsave(&irqbits_lock, flags);
|
||
|
irqbits &= ~(1 << irqnumber);
|
||
|
spin_unlock_irqrestore(&irqbits_lock, flags);
|
||
|
}
|
||
|
|
||
|
void release_vm86_irqs(struct task_struct *task)
|
||
|
{
|
||
|
int i;
|
||
|
for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
|
||
|
if (vm86_irqs[i].tsk == task)
|
||
|
free_vm86_irq(i);
|
||
|
}
|
||
|
|
||
|
static inline int get_and_reset_irq(int irqnumber)
|
||
|
{
|
||
|
int bit;
|
||
|
unsigned long flags;
|
||
|
int ret = 0;
|
||
|
|
||
|
if (invalid_vm86_irq(irqnumber)) return 0;
|
||
|
if (vm86_irqs[irqnumber].tsk != current) return 0;
|
||
|
spin_lock_irqsave(&irqbits_lock, flags);
|
||
|
bit = irqbits & (1 << irqnumber);
|
||
|
irqbits &= ~bit;
|
||
|
if (bit) {
|
||
|
enable_irq(irqnumber);
|
||
|
ret = 1;
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&irqbits_lock, flags);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int do_vm86_irq_handling(int subfunction, int irqnumber)
|
||
|
{
|
||
|
int ret;
|
||
|
switch (subfunction) {
|
||
|
case VM86_GET_AND_RESET_IRQ: {
|
||
|
return get_and_reset_irq(irqnumber);
|
||
|
}
|
||
|
case VM86_GET_IRQ_BITS: {
|
||
|
return irqbits;
|
||
|
}
|
||
|
case VM86_REQUEST_IRQ: {
|
||
|
int sig = irqnumber >> 8;
|
||
|
int irq = irqnumber & 255;
|
||
|
if (!capable(CAP_SYS_ADMIN)) return -EPERM;
|
||
|
if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
|
||
|
if (invalid_vm86_irq(irq)) return -EPERM;
|
||
|
if (vm86_irqs[irq].tsk) return -EPERM;
|
||
|
ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
|
||
|
if (ret) return ret;
|
||
|
vm86_irqs[irq].sig = sig;
|
||
|
vm86_irqs[irq].tsk = current;
|
||
|
return irq;
|
||
|
}
|
||
|
case VM86_FREE_IRQ: {
|
||
|
if (invalid_vm86_irq(irqnumber)) return -EPERM;
|
||
|
if (!vm86_irqs[irqnumber].tsk) return 0;
|
||
|
if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
|
||
|
free_vm86_irq(irqnumber);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|