/* * Mediatek 8250 DMA driver. * * Copyright (c) 2017 MediaTek Inc. * Author: Long Cheng * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "mtk-8250-dma: " fmt #define DRV_NAME "mtk-8250-dma" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virt-dma.h" #define MTK_SDMA_REQUESTS 127 #define MTK_SDMA_CHANNELS (CONFIG_SERIAL_8250_NR_UARTS * 2) #define VFF_RX_INT_FLAG_CLR_B (BIT(0) | BIT(1)) #define VFF_TX_INT_FLAG_CLR_B 0 #define VFF_RX_INT_EN0_B BIT(0) /*rx valid size >= vff thre */ #define VFF_RX_INT_EN1_B BIT(1) #define VFF_TX_INT_EN_B BIT(0) /*tx left size >= vff thre */ #define VFF_INT_EN_CLR_B 0 #define VFF_WARM_RST_B BIT(0) #define VFF_EN_B BIT(0) #define VFF_STOP_B BIT(0) #define VFF_STOP_CLR_B 0 #define VFF_FLUSH_B BIT(0) #define VFF_FLUSH_CLR_B 0 #define VFF_4G_SUPPORT_B BIT(0) #define VFF_4G_SUPPORT_CLR_B 0 #define VFF_TX_THRE(n) ((n)*7/8) /* interrupt trigger level for tx */ #define VFF_RX_THRE(n) ((n)*3/4) /* interrupt trigger level for rx */ #define MTK_DMA_RING_SIZE 0xffffU /* invert this bit when wrap ring head again*/ #define MTK_DMA_RING_WRAP 0x10000U struct mtk_dmadev { struct dma_device ddev; void __iomem *mem_base[MTK_SDMA_CHANNELS]; spinlock_t lock; struct tasklet_struct task; struct list_head pending; struct clk *clk; unsigned int dma_requests; bool support_33bits; unsigned int dma_irq[MTK_SDMA_CHANNELS]; struct mtk_chan *lch_map[MTK_SDMA_CHANNELS]; }; struct mtk_chan { struct virt_dma_chan vc; struct list_head node; struct dma_slave_config cfg; void __iomem *channel_base; struct mtk_dma_desc *desc; bool paused; bool requested; unsigned int dma_sig; unsigned int dma_ch; unsigned int sgidx; unsigned int remain_size; unsigned int rx_ptr; /*sync*/ struct completion done; /* dma transfer done */ spinlock_t lock; atomic_t loopcnt; atomic_t entry; /* entry count */ }; struct mtk_dma_sg { dma_addr_t addr; unsigned int en; /* number of elements (24-bit) */ unsigned int fn; /* number of frames (16-bit) */ }; struct mtk_dma_desc { struct virt_dma_desc vd; enum dma_transfer_direction dir; dma_addr_t dev_addr; unsigned int sglen; struct mtk_dma_sg sg[0]; }; enum { VFF_INT_FLAG = 0x00, VFF_INT_EN = 0x04, VFF_EN = 0x08, VFF_RST = 0x0c, VFF_STOP = 0x10, VFF_FLUSH = 0x14, VFF_ADDR = 0x1c, VFF_LEN = 0x24, VFF_THRE = 0x28, VFF_WPT = 0x2c, VFF_RPT = 0x30, /*TX: the buffer size HW can read. RX: the buffer size SW can read.*/ VFF_VALID_SIZE = 0x3c, /*TX: the buffer size SW can write. RX: the buffer size HW can write.*/ VFF_LEFT_SIZE = 0x40, VFF_DEBUG_STATUS = 0x50, VFF_4G_SUPPORT = 0x54, }; static bool mtk_dma_filter_fn(struct dma_chan *chan, void *param); static struct of_dma_filter_info mtk_dma_info = { .filter_fn = mtk_dma_filter_fn, }; static inline struct mtk_dmadev *to_mtk_dma_dev(struct dma_device *d) { return container_of(d, struct mtk_dmadev, ddev); } static inline struct mtk_chan *to_mtk_dma_chan(struct dma_chan *c) { return container_of(c, struct mtk_chan, vc.chan); } static inline struct mtk_dma_desc *to_mtk_dma_desc(struct dma_async_tx_descriptor *t) { return container_of(t, struct mtk_dma_desc, vd.tx); } static void mtk_dma_chan_write(struct mtk_chan *c, unsigned int reg, unsigned int val) { writel(val, c->channel_base + reg); } static unsigned int mtk_dma_chan_read(struct mtk_chan *c, unsigned int reg) { return readl(c->channel_base + reg); } static void mtk_dma_desc_free(struct virt_dma_desc *vd) { struct dma_chan *chan = vd->tx.chan; struct mtk_chan *c = to_mtk_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); if (c->desc != NULL) { kfree(c->desc); c->desc = NULL; if (c->cfg.direction == DMA_DEV_TO_MEM) atomic_dec(&c->entry); } spin_unlock_irqrestore(&c->vc.lock, flags); } static int mtk_dma_clk_enable(struct mtk_dmadev *mtkd) { int rc; rc = clk_prepare_enable(mtkd->clk); if (rc) { pr_err("Couldn't enable the clock\n"); return rc; } return 0; } static void mtk_dma_clk_disable(struct mtk_dmadev *mtkd) { clk_disable_unprepare(mtkd->clk); } static void mtk_dma_remove_virt_list(dma_cookie_t cookie, struct virt_dma_chan *vc) { struct virt_dma_desc *vd; if (list_empty(&vc->desc_issued) == 0) { list_for_each_entry(vd, &vc->desc_issued, node) { if (cookie == vd->tx.cookie) { INIT_LIST_HEAD(&vc->desc_issued); break; } } } } static void mtk_dma_tx_flush(struct dma_chan *chan) { struct mtk_chan *c = to_mtk_dma_chan(chan); if (mtk_dma_chan_read(c, VFF_FLUSH) == 0) { mtk_dma_chan_write(c, VFF_FLUSH, VFF_FLUSH_B); if (atomic_dec_and_test(&c->loopcnt)) complete(&c->done); } } /* * check whether the dma flush operation is finished or not. * return 0 for flush success. * return others for flush timeout. */ static int mtk_dma_check_flush_result(struct dma_chan *chan) { struct timespec start, end; struct mtk_chan *c = to_mtk_dma_chan(chan); start = ktime_to_timespec(ktime_get()); while (mtk_dma_chan_read(c, VFF_FLUSH)) { end = ktime_to_timespec(ktime_get()); if ((end.tv_sec - start.tv_sec) > 1 || ((end.tv_sec - start.tv_sec) == 1 && end.tv_nsec > start.tv_nsec)) { pr_err("[DMA] Polling flush timeout\n"); return -1; } } return 0; } static void mtk_dma_tx_write(struct dma_chan *chan) { struct mtk_chan *c = to_mtk_dma_chan(chan); struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device); unsigned int txcount = c->remain_size; unsigned int len, send, left, wpt, wrap; if (atomic_inc_return(&c->entry) > 1) { if (vchan_issue_pending(&c->vc) && (c->desc == NULL)) { spin_lock(&mtkd->lock); list_add_tail(&c->node, &mtkd->pending); spin_unlock(&mtkd->lock); tasklet_schedule(&mtkd->task); } } else { len = mtk_dma_chan_read(c, VFF_LEN); if (mtk_dma_check_flush_result(chan) != 0) return; while ((left = mtk_dma_chan_read(c, VFF_LEFT_SIZE)) > 0U) { send = min(left, c->remain_size); wpt = mtk_dma_chan_read(c, VFF_WPT); wrap = wpt & MTK_DMA_RING_WRAP ? 0 : MTK_DMA_RING_WRAP; if ((wpt & (len - 1U)) + send < len) mtk_dma_chan_write(c, VFF_WPT, wpt + send); else mtk_dma_chan_write(c, VFF_WPT, ((wpt + send) & (len - 1U)) | wrap); c->remain_size -= send; if (c->remain_size == 0U) break; } if (txcount != c->remain_size) { mtk_dma_chan_write(c, VFF_INT_EN, VFF_TX_INT_EN_B); mtk_dma_tx_flush(chan); } } atomic_dec(&c->entry); } static void mtk_dma_start_tx(struct mtk_chan *c) { if (mtk_dma_chan_read(c, VFF_LEFT_SIZE) == 0U) { pr_info("%s maybe need fix? @L %d\n", __func__, __LINE__); mtk_dma_chan_write(c, VFF_INT_EN, VFF_TX_INT_EN_B); } else { reinit_completion(&c->done); /* inc twice, once for tx_flush, another for tx_interrupt */ atomic_inc(&c->loopcnt); atomic_inc(&c->loopcnt); mtk_dma_tx_write(&c->vc.chan); } c->paused = false; } static void mtk_dma_get_rx_size(struct mtk_chan *c) { unsigned int count; unsigned int rdptr, wrptr, wrreg, rdreg; unsigned int rx_size = mtk_dma_chan_read(c, VFF_LEN); rdreg = mtk_dma_chan_read(c, VFF_RPT); wrreg = mtk_dma_chan_read(c, VFF_WPT); rdptr = rdreg & MTK_DMA_RING_SIZE; wrptr = wrreg & MTK_DMA_RING_SIZE; count = ((rdreg ^ wrreg) & MTK_DMA_RING_WRAP) ? (wrptr + rx_size - rdptr) : (wrptr - rdptr); c->remain_size = count; c->rx_ptr = rdptr; mtk_dma_chan_write(c, VFF_RPT, wrreg); } static void mtk_dma_start_rx(struct mtk_chan *c) { struct dma_chan *chan = &(c->vc.chan); struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device); struct mtk_dma_desc *d = c->desc; if (mtk_dma_chan_read(c, VFF_VALID_SIZE) != 0U && d != NULL && d->vd.tx.cookie != 0) { mtk_dma_get_rx_size(c); mtk_dma_remove_virt_list(d->vd.tx.cookie, &c->vc); vchan_cookie_complete(&d->vd); } else { if (mtk_dma_chan_read(c, VFF_VALID_SIZE) != 0U) { spin_lock(&mtkd->lock); if (list_empty(&mtkd->pending)) list_add_tail(&c->node, &mtkd->pending); spin_unlock(&mtkd->lock); tasklet_schedule(&mtkd->task); } else { if (atomic_read(&c->entry) > 0UL) atomic_set(&c->entry, 0); } } } static void mtk_dma_reset(struct mtk_chan *c) { struct mtk_dmadev *mtkd = to_mtk_dma_dev(c->vc.chan.device); mtk_dma_chan_write(c, VFF_ADDR, 0); mtk_dma_chan_write(c, VFF_THRE, 0); mtk_dma_chan_write(c, VFF_LEN, 0); mtk_dma_chan_write(c, VFF_RST, VFF_WARM_RST_B); while (mtk_dma_chan_read(c, VFF_EN)); if (c->cfg.direction == DMA_DEV_TO_MEM) mtk_dma_chan_write(c, VFF_RPT, 0); else if (c->cfg.direction == DMA_MEM_TO_DEV) mtk_dma_chan_write(c, VFF_WPT, 0); else pr_info("Unknown direction.\n"); if (mtkd->support_33bits) mtk_dma_chan_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B); } static void mtk_dma_stop(struct mtk_chan *c) { int polling_cnt; mtk_dma_chan_write(c, VFF_FLUSH, VFF_FLUSH_CLR_B); polling_cnt = 0; while (mtk_dma_chan_read(c, VFF_FLUSH)) { if (polling_cnt++ > 10000) { pr_err("dma stop: polling FLUSH fail, DEBUG=0x%x\n", mtk_dma_chan_read(c, VFF_DEBUG_STATUS)); break; } } polling_cnt = 0; /*set stop as 1 -> wait until en is 0 -> set stop as 0*/ mtk_dma_chan_write(c, VFF_STOP, VFF_STOP_B); while (mtk_dma_chan_read(c, VFF_EN)) { if (polling_cnt++ > 10000) { pr_err("dma stop: polling VFF_EN fail, DEBUG=0x%x\n", mtk_dma_chan_read(c, VFF_DEBUG_STATUS)); break; } } mtk_dma_chan_write(c, VFF_STOP, VFF_STOP_CLR_B); mtk_dma_chan_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B); if (c->cfg.direction == DMA_DEV_TO_MEM) mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_RX_INT_FLAG_CLR_B); else mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_TX_INT_FLAG_CLR_B); c->paused = true; } /* * We need to deal with 'all channels in-use' */ static void mtk_dma_rx_sched(struct mtk_chan *c) { struct dma_chan *chan = &(c->vc.chan); struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device); if (atomic_read(&c->entry) < 1) { mtk_dma_start_rx(c); } else { spin_lock(&mtkd->lock); if (list_empty(&mtkd->pending)) list_add_tail(&c->node, &mtkd->pending); spin_unlock(&mtkd->lock); tasklet_schedule(&mtkd->task); } } /* * This callback schedules all pending channels. We could be more * clever here by postponing allocation of the real DMA channels to * this point, and freeing them when our virtual channel becomes idle. * * We would then need to deal with 'all channels in-use' */ static void mtk_dma_sched(unsigned long data) { struct mtk_dmadev *mtkd = (struct mtk_dmadev *)data; struct mtk_chan *c; struct virt_dma_desc *vd; dma_cookie_t cookie; LIST_HEAD(head); unsigned long flags; spin_lock_irq(&mtkd->lock); list_splice_tail_init(&mtkd->pending, &head); spin_unlock_irq(&mtkd->lock); if (list_empty(&head) == 0) { c = list_first_entry(&head, struct mtk_chan, node); cookie = c->vc.chan.cookie; spin_lock_irqsave(&c->vc.lock, flags); if (c->cfg.direction == DMA_DEV_TO_MEM) { list_del_init(&c->node); mtk_dma_rx_sched(c); } else if (c->cfg.direction == DMA_MEM_TO_DEV) { vd = vchan_find_desc(&c->vc, cookie); c->desc = to_mtk_dma_desc(&vd->tx); list_del_init(&c->node); mtk_dma_start_tx(c); } spin_unlock_irqrestore(&c->vc.lock, flags); } } static int mtk_dma_alloc_chan_resources(struct dma_chan *chan) { struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device); struct mtk_chan *c = to_mtk_dma_chan(chan); int ret; pm_runtime_get_sync(mtkd->ddev.dev); ret = -EBUSY; if (mtkd->lch_map[c->dma_ch] == NULL) { c->channel_base = mtkd->mem_base[c->dma_ch]; mtkd->lch_map[c->dma_ch] = c; ret = 1; } c->requested = false; mtk_dma_reset(c); return ret; } static void mtk_dma_free_chan_resources(struct dma_chan *chan) { struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device); struct mtk_chan *c = to_mtk_dma_chan(chan); if (c->requested == true) { c->requested = false; free_irq(mtkd->dma_irq[c->dma_ch], chan); } c->channel_base = NULL; mtkd->lch_map[c->dma_ch] = NULL; vchan_free_chan_resources(&c->vc); pr_debug("freeing channel for %u\n", c->dma_sig); c->dma_sig = 0; tasklet_kill(&mtkd->task); pm_runtime_put_sync(mtkd->ddev.dev); } static enum dma_status mtk_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct mtk_chan *c = to_mtk_dma_chan(chan); enum dma_status ret; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); spin_lock_irqsave(&c->vc.lock, flags); if (ret == DMA_IN_PROGRESS) { c->rx_ptr = mtk_dma_chan_read(c, VFF_RPT) & MTK_DMA_RING_SIZE; txstate->residue = c->rx_ptr; } else if (ret == DMA_COMPLETE && c->cfg.direction == DMA_DEV_TO_MEM) { txstate->residue = c->remain_size; } else { txstate->residue = 0; } spin_unlock_irqrestore(&c->vc.lock, flags); return ret; } static unsigned int mtk_dma_desc_size(struct mtk_dma_desc *d) { struct mtk_dma_sg *sg; unsigned int i; unsigned int size; for (size = i = 0; i < d->sglen; i++) { sg = &d->sg[i]; size += sg->en * sg->fn; } return size; } static struct dma_async_tx_descriptor *mtk_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sglen, enum dma_transfer_direction dir, unsigned long tx_flags, void *context) { struct mtk_chan *c = to_mtk_dma_chan(chan); enum dma_slave_buswidth dev_width; struct scatterlist *sgent; struct mtk_dma_desc *d; dma_addr_t dev_addr; unsigned int i, j, en, frame_bytes; en = frame_bytes = 1; if (dir == DMA_DEV_TO_MEM) { dev_addr = c->cfg.src_addr; dev_width = c->cfg.src_addr_width; } else if (dir == DMA_MEM_TO_DEV) { dev_addr = c->cfg.dst_addr; dev_width = c->cfg.dst_addr_width; } else { pr_err("%s: bad direction?\n", __func__); return NULL; } /* Now allocate and setup the descriptor. */ d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC); if (d == NULL) return NULL; d->dir = dir; d->dev_addr = dev_addr; j = 0; for_each_sg(sgl, sgent, sglen, i) { d->sg[j].addr = sg_dma_address(sgent); d->sg[j].en = en; d->sg[j].fn = sg_dma_len(sgent) / frame_bytes; j++; } d->sglen = j; if (dir == DMA_MEM_TO_DEV) c->remain_size = mtk_dma_desc_size(d); return vchan_tx_prep(&c->vc, &d->vd, tx_flags); } static void mtk_dma_issue_pending(struct dma_chan *chan) { struct mtk_chan *c = to_mtk_dma_chan(chan); struct mtk_dmadev *mtkd; struct virt_dma_desc *vd; dma_cookie_t cookie; unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); if (c->cfg.direction == DMA_DEV_TO_MEM) { cookie = c->vc.chan.cookie; mtkd = to_mtk_dma_dev(chan->device); if (vchan_issue_pending(&c->vc) && (c->desc == NULL)) { vd = vchan_find_desc(&c->vc, cookie); c->desc = to_mtk_dma_desc(&vd->tx); if (atomic_read(&c->entry) > 0) atomic_set(&c->entry, 0); } } else if (c->cfg.direction == DMA_MEM_TO_DEV) { cookie = c->vc.chan.cookie; if (vchan_issue_pending(&c->vc) && !c->desc) { vd = vchan_find_desc(&c->vc, cookie); c->desc = to_mtk_dma_desc(&vd->tx); mtk_dma_start_tx(c); } } spin_unlock_irqrestore(&c->vc.lock, flags); } static irqreturn_t mtk_dma_rx_interrupt(int irq, void *dev_id) { struct dma_chan *chan = (struct dma_chan *)dev_id; struct mtk_chan *c = to_mtk_dma_chan(chan); struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device); unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_RX_INT_FLAG_CLR_B); if (atomic_inc_return(&c->entry) > 1) { if (list_empty(&mtkd->pending)) list_add_tail(&c->node, &mtkd->pending); tasklet_schedule(&mtkd->task); } else { mtk_dma_start_rx(c); } spin_unlock_irqrestore(&c->vc.lock, flags); return IRQ_HANDLED; } static irqreturn_t mtk_dma_tx_interrupt(int irq, void *dev_id) { struct dma_chan *chan = (struct dma_chan *)dev_id; struct mtk_chan *c = to_mtk_dma_chan(chan); struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device); struct mtk_dma_desc *d = c->desc; unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); if (c->remain_size != 0) { list_add_tail(&c->node, &mtkd->pending); tasklet_schedule(&mtkd->task); } else { mtk_dma_remove_virt_list(d->vd.tx.cookie, &c->vc); vchan_cookie_complete(&d->vd); } spin_unlock_irqrestore(&c->vc.lock, flags); mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_TX_INT_FLAG_CLR_B); if (atomic_dec_and_test(&c->loopcnt)) complete(&c->done); return IRQ_HANDLED; } static int mtk_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct mtk_chan *c = to_mtk_dma_chan(chan); struct mtk_dmadev *mtkd = to_mtk_dma_dev(c->vc.chan.device); int ret; c->cfg = *cfg; if (cfg->direction == DMA_DEV_TO_MEM) { unsigned int rx_len = cfg->src_addr_width * 1024; mtk_dma_chan_write(c, VFF_ADDR, cfg->src_addr); mtk_dma_chan_write(c, VFF_LEN, rx_len); mtk_dma_chan_write(c, VFF_THRE, VFF_RX_THRE(rx_len)); mtk_dma_chan_write(c, VFF_INT_EN, VFF_RX_INT_EN0_B | VFF_RX_INT_EN1_B); mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_RX_INT_FLAG_CLR_B); mtk_dma_chan_write(c, VFF_EN, VFF_EN_B); if (c->requested == false) { atomic_set(&c->entry, 0); c->requested = true; ret = request_irq(mtkd->dma_irq[c->dma_ch], mtk_dma_rx_interrupt, IRQF_TRIGGER_NONE, DRV_NAME, chan); if (ret) { pr_err("Cannot request rx dma IRQ\n"); return -EINVAL; } } } else if (cfg->direction == DMA_MEM_TO_DEV) { unsigned int tx_len = cfg->dst_addr_width * 1024; mtk_dma_chan_write(c, VFF_ADDR, cfg->dst_addr); mtk_dma_chan_write(c, VFF_LEN, tx_len); mtk_dma_chan_write(c, VFF_THRE, VFF_TX_THRE(tx_len)); mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_TX_INT_FLAG_CLR_B); mtk_dma_chan_write(c, VFF_EN, VFF_EN_B); if (c->requested == false) { c->requested = true; ret = request_irq(mtkd->dma_irq[c->dma_ch], mtk_dma_tx_interrupt, IRQF_TRIGGER_NONE, DRV_NAME, chan); if (ret) { pr_err("Cannot request tx dma IRQ\n"); return -EINVAL; } } } else pr_info("Unknown direction!\n"); if (mtkd->support_33bits) mtk_dma_chan_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_B); if (mtk_dma_chan_read(c, VFF_EN) != VFF_EN_B) { pr_err("config dir%d dma fail\n", cfg->direction); return -EINVAL; } return 0; } static int mtk_dma_terminate_all(struct dma_chan *chan) { struct mtk_chan *c = to_mtk_dma_chan(chan); unsigned long flags; LIST_HEAD(head); if (atomic_read(&c->loopcnt) != 0) wait_for_completion(&c->done); spin_lock_irqsave(&c->vc.lock, flags); if (c->desc) { mtk_dma_remove_virt_list(c->desc->vd.tx.cookie, &c->vc); spin_unlock_irqrestore(&c->vc.lock, flags); mtk_dma_desc_free(&c->desc->vd); spin_lock_irqsave(&c->vc.lock, flags); if (c->paused == false) { list_del_init(&c->node); mtk_dma_stop(c); } } vchan_get_all_descriptors(&c->vc, &head); spin_unlock_irqrestore(&c->vc.lock, flags); vchan_dma_desc_free_list(&c->vc, &head); return 0; } static int mtk_dma_device_pause(struct dma_chan *chan) { /* Pause/Resume only allowed with cyclic mode */ return -EINVAL; } static int mtk_dma_device_resume(struct dma_chan *chan) { /* Pause/Resume only allowed with cyclic mode */ return -EINVAL; } static int mtk_dma_chan_init(struct mtk_dmadev *mtkd) { struct mtk_chan *c; c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL); if (c == NULL) return -ENOMEM; c->vc.desc_free = mtk_dma_desc_free; vchan_init(&c->vc, &mtkd->ddev); spin_lock_init(&c->lock); INIT_LIST_HEAD(&c->node); init_completion(&c->done); atomic_set(&c->loopcnt, 0); atomic_set(&c->entry, 0); return 0; } static void mtk_dma_free(struct mtk_dmadev *mtkd) { tasklet_kill(&mtkd->task); while (list_empty(&mtkd->ddev.channels) == 0) { struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels, struct mtk_chan, vc.chan.device_node); list_del(&c->vc.chan.device_node); tasklet_kill(&c->vc.task); devm_kfree(mtkd->ddev.dev, c); } } static const struct of_device_id mtk_uart_dma_match[] = { { .compatible = "mediatek,mt6577-uart-dma", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mtk_uart_dma_match); static int mtk_dma_probe(struct platform_device *pdev) { struct mtk_dmadev *mtkd; struct resource *res; int rc, i; mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL); if (mtkd == NULL) return -ENOMEM; for (i = 0; i < MTK_SDMA_CHANNELS; i++) { res = platform_get_resource(pdev, IORESOURCE_MEM, i); if (res == NULL) return -ENODEV; mtkd->mem_base[i] = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mtkd->mem_base[i])) return PTR_ERR(mtkd->mem_base[i]); } /* request irq */ for (i = 0; i < MTK_SDMA_CHANNELS; i++) { mtkd->dma_irq[i] = platform_get_irq(pdev, i); if ((int)mtkd->dma_irq[i] < 0) { pr_err("Cannot claim IRQ%d\n", i); return mtkd->dma_irq[i]; } } mtkd->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(mtkd->clk)) { pr_err("No clock specified\n"); return PTR_ERR(mtkd->clk); } if (of_property_read_bool(pdev->dev.of_node, "dma-33bits")) { pr_info("Support dma 33bits\n"); mtkd->support_33bits = true; } if (mtkd->support_33bits) rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(33)); else rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (rc) return rc; dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask); mtkd->ddev.device_alloc_chan_resources = mtk_dma_alloc_chan_resources; mtkd->ddev.device_free_chan_resources = mtk_dma_free_chan_resources; mtkd->ddev.device_tx_status = mtk_dma_tx_status; mtkd->ddev.device_issue_pending = mtk_dma_issue_pending; mtkd->ddev.device_prep_slave_sg = mtk_dma_prep_slave_sg; mtkd->ddev.device_config = mtk_dma_slave_config; mtkd->ddev.device_pause = mtk_dma_device_pause; mtkd->ddev.device_resume = mtk_dma_device_resume; mtkd->ddev.device_terminate_all = mtk_dma_terminate_all; mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE); mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE); mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; mtkd->ddev.dev = &pdev->dev; INIT_LIST_HEAD(&mtkd->ddev.channels); INIT_LIST_HEAD(&mtkd->pending); spin_lock_init(&mtkd->lock); tasklet_init(&mtkd->task, mtk_dma_sched, (unsigned long)mtkd); mtkd->dma_requests = MTK_SDMA_REQUESTS; if ((pdev->dev.of_node != NULL) && (of_property_read_u32(pdev->dev.of_node, "dma-requests", &mtkd->dma_requests) != 0)) { pr_info("Missing dma-requests property, using %u.\n", MTK_SDMA_REQUESTS); } for (i = 0; i < MTK_SDMA_CHANNELS; i++) { rc = mtk_dma_chan_init(mtkd); if (rc) { goto err_no_dma; } } pm_runtime_enable(&pdev->dev); pm_runtime_set_active(&pdev->dev); rc = dma_async_device_register(&mtkd->ddev); if (rc) { pr_warn("fail to register slave DMA device: %d\n", rc); mtk_dma_clk_disable(mtkd); goto err_no_dma; } platform_set_drvdata(pdev, mtkd); if (pdev->dev.of_node) { mtk_dma_info.dma_cap = mtkd->ddev.cap_mask; /* Device-tree DMA controller registration */ rc = of_dma_controller_register(pdev->dev.of_node, of_dma_simple_xlate, &mtk_dma_info); if (rc) { pr_warn("fail to register DMA controller\n"); dma_async_device_unregister(&mtkd->ddev); mtk_dma_clk_disable(mtkd); goto err_no_dma; } } return rc; err_no_dma: mtk_dma_free(mtkd); return rc; } static int mtk_dma_remove(struct platform_device *pdev) { struct mtk_dmadev *mtkd = platform_get_drvdata(pdev); if (pdev->dev.of_node) of_dma_controller_free(pdev->dev.of_node); pm_runtime_disable(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); dma_async_device_unregister(&mtkd->ddev); mtk_dma_free(mtkd); return 0; } #ifdef CONFIG_PM_SLEEP static int mtk_dma_suspend(struct device *dev) { struct mtk_dmadev *mtkd = dev_get_drvdata(dev); if (!pm_runtime_suspended(dev)) mtk_dma_clk_disable(mtkd); return 0; } static int mtk_dma_resume(struct device *dev) { int ret; struct mtk_dmadev *mtkd = dev_get_drvdata(dev); if (!pm_runtime_suspended(dev)) { ret = mtk_dma_clk_enable(mtkd); if (ret) { pr_info("fail to enable clk: %d\n", ret); return ret; } } return 0; } static int mtk_dma_runtime_suspend(struct device *dev) { struct mtk_dmadev *mtkd = dev_get_drvdata(dev); mtk_dma_clk_disable(mtkd); return 0; } static int mtk_dma_runtime_resume(struct device *dev) { int ret; struct mtk_dmadev *mtkd = dev_get_drvdata(dev); ret = mtk_dma_clk_enable(mtkd); if (ret) { pr_info("fail to enable clk: %d\n", ret); return ret; } return 0; } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops mtk_dma_pm = { SET_SYSTEM_SLEEP_PM_OPS(mtk_dma_suspend, mtk_dma_resume) SET_RUNTIME_PM_OPS(mtk_dma_runtime_suspend, mtk_dma_runtime_resume, NULL) }; static struct platform_driver mtk_dma_driver = { .probe = mtk_dma_probe, .remove = mtk_dma_remove, .driver = { .name = "mtk-8250-dma", .pm = &mtk_dma_pm, .of_match_table = of_match_ptr(mtk_uart_dma_match), }, }; static bool mtk_dma_filter_fn(struct dma_chan *chan, void *param) { if (chan->device->dev->driver == &mtk_dma_driver.driver) { struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device); struct mtk_chan *c = to_mtk_dma_chan(chan); unsigned int req = *(unsigned int *)param; if (req <= mtkd->dma_requests) { c->dma_sig = req; c->dma_ch = req; return true; } } return false; } static int mtk_dma_init(void) { return platform_driver_register(&mtk_dma_driver); } subsys_initcall(mtk_dma_init); static void __exit mtk_dma_exit(void) { platform_driver_unregister(&mtk_dma_driver); } module_exit(mtk_dma_exit);