/* * A fairly generic DMA-API to IOMMU-API glue layer. * * Copyright (C) 2014-2015 ARM Ltd. * * based in part on arch/arm/mm/dma-mapping.c: * Copyright (C) 2000-2004 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include struct iommu_dma_msi_page { struct list_head list; dma_addr_t iova; phys_addr_t phys; }; struct iommu_dma_cookie { struct iova_domain iovad; struct list_head msi_page_list; spinlock_t msi_lock; }; static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain) { return &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad; } int iommu_dma_init(void) { return iova_cache_get(); } /** * iommu_get_dma_cookie - Acquire DMA-API resources for a domain * @domain: IOMMU domain to prepare for DMA-API usage * * IOMMU drivers should normally call this from their domain_alloc * callback when domain->type == IOMMU_DOMAIN_DMA. */ int iommu_get_dma_cookie(struct iommu_domain *domain) { struct iommu_dma_cookie *cookie; if (domain->iova_cookie) return -EEXIST; cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); if (!cookie) return -ENOMEM; spin_lock_init(&cookie->msi_lock); INIT_LIST_HEAD(&cookie->msi_page_list); domain->iova_cookie = cookie; return 0; } EXPORT_SYMBOL(iommu_get_dma_cookie); /** * iommu_put_dma_cookie - Release a domain's DMA mapping resources * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() * * IOMMU drivers should normally call this from their domain_free callback. */ void iommu_put_dma_cookie(struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iommu_dma_msi_page *msi, *tmp; if (!cookie) return; if (cookie->iovad.granule) put_iova_domain(&cookie->iovad); list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { list_del(&msi->list); kfree(msi); } kfree(cookie); domain->iova_cookie = NULL; } EXPORT_SYMBOL(iommu_put_dma_cookie); static void iova_reserve_pci_windows(struct pci_dev *dev, struct iova_domain *iovad) { struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); struct resource_entry *window; unsigned long lo, hi; resource_list_for_each_entry(window, &bridge->windows) { if (resource_type(window->res) != IORESOURCE_MEM) continue; lo = iova_pfn(iovad, window->res->start - window->offset); hi = iova_pfn(iovad, window->res->end - window->offset); reserve_iova(iovad, lo, hi); } } /** * iommu_dma_init_domain - Initialise a DMA mapping domain * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() * @base: IOVA at which the mappable address space starts * @size: Size of IOVA space * @dev: Device the domain is being initialised for * * @base and @size should be exact multiples of IOMMU page granularity to * avoid rounding surprises. If necessary, we reserve the page at address 0 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but * any change which could make prior IOVAs invalid will fail. */ int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size, struct device *dev) { struct iova_domain *iovad = cookie_iovad(domain); unsigned long order, base_pfn, end_pfn; if (!iovad) return -ENODEV; /* Use the smallest supported page size for IOVA granularity */ order = __ffs(domain->pgsize_bitmap); base_pfn = max_t(unsigned long, 1, base >> order); end_pfn = (base + size - 1) >> order; /* Check the domain allows at least some access to the device... */ if (domain->geometry.force_aperture) { if (base > domain->geometry.aperture_end || base + size <= domain->geometry.aperture_start) { pr_warn("specified DMA range outside IOMMU capability\n"); return -EFAULT; } /* ...then finally give it a kicking to make sure it fits */ base_pfn = max_t(unsigned long, base_pfn, domain->geometry.aperture_start >> order); end_pfn = min_t(unsigned long, end_pfn, domain->geometry.aperture_end >> order); } /* All we can safely do with an existing domain is enlarge it */ if (iovad->start_pfn) { if (1UL << order != iovad->granule || base_pfn != iovad->start_pfn || end_pfn < iovad->dma_32bit_pfn) { pr_warn("Incompatible range for DMA domain\n"); return -EFAULT; } iovad->dma_32bit_pfn = end_pfn; } else { init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); if (dev && dev_is_pci(dev)) iova_reserve_pci_windows(to_pci_dev(dev), iovad); } return 0; } EXPORT_SYMBOL(iommu_dma_init_domain); /** * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags * @dir: Direction of DMA transfer * @coherent: Is the DMA master cache-coherent? * * Return: corresponding IOMMU API page protection flags */ int dma_direction_to_prot(enum dma_data_direction dir, bool coherent) { int prot = coherent ? IOMMU_CACHE : 0; switch (dir) { case DMA_BIDIRECTIONAL: return prot | IOMMU_READ | IOMMU_WRITE; case DMA_TO_DEVICE: return prot | IOMMU_READ; case DMA_FROM_DEVICE: return prot | IOMMU_WRITE; default: return 0; } } static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size, dma_addr_t dma_limit) { struct iova_domain *iovad = cookie_iovad(domain); unsigned long shift = iova_shift(iovad); unsigned long length = iova_align(iovad, size) >> shift; if (domain->geometry.force_aperture) dma_limit = min(dma_limit, domain->geometry.aperture_end); /* * Enforce size-alignment to be safe - there could perhaps be an * attribute to control this per-device, or at least per-domain... */ return alloc_iova(iovad, length, dma_limit >> shift, true); } /* The IOVA allocator knows what we mapped, so just unmap whatever that was */ static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr) { struct iova_domain *iovad = cookie_iovad(domain); unsigned long shift = iova_shift(iovad); unsigned long pfn = dma_addr >> shift; struct iova *iova = find_iova(iovad, pfn); size_t size; if (WARN_ON(!iova)) return; size = iova_size(iova) << shift; size -= iommu_unmap(domain, pfn << shift, size); /* ...and if we can't, then something is horribly, horribly wrong */ WARN_ON(size > 0); __free_iova(iovad, iova); } static void __iommu_dma_free_pages(struct page **pages, int count) { while (count--) __free_page(pages[count]); kvfree(pages); } static struct page **__iommu_dma_alloc_pages(unsigned int count, unsigned long order_mask, gfp_t gfp) { struct page **pages; unsigned int i = 0, array_size = count * sizeof(*pages); order_mask &= (2U << MAX_ORDER) - 1; if (!order_mask) return NULL; if (array_size <= PAGE_SIZE) pages = kzalloc(array_size, GFP_KERNEL); else pages = vzalloc(array_size); if (!pages) return NULL; /* IOMMU can map any pages, so himem can also be used here */ gfp |= __GFP_NOWARN | __GFP_HIGHMEM; while (count) { struct page *page = NULL; unsigned int order_size; /* * Higher-order allocations are a convenience rather * than a necessity, hence using __GFP_NORETRY until * falling back to minimum-order allocations. */ for (order_mask &= (2U << __fls(count)) - 1; order_mask; order_mask &= ~order_size) { unsigned int order = __fls(order_mask); order_size = 1U << order; page = alloc_pages((order_mask - order_size) ? gfp | __GFP_NORETRY : gfp, order); if (!page) continue; if (!order) break; if (!PageCompound(page)) { split_page(page, order); break; } else if (!split_huge_page(page)) { break; } __free_pages(page, order); } if (!page) { __iommu_dma_free_pages(pages, i); return NULL; } count -= order_size; while (order_size--) pages[i++] = page++; } return pages; } /** * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() * @dev: Device which owns this buffer * @pages: Array of buffer pages as returned by iommu_dma_alloc() * @size: Size of buffer in bytes * @handle: DMA address of buffer * * Frees both the pages associated with the buffer, and the array * describing them */ void iommu_dma_free(struct device *dev, struct page **pages, size_t size, dma_addr_t *handle) { __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle); __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); *handle = DMA_ERROR_CODE; } /** * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space * @dev: Device to allocate memory for. Must be a real device * attached to an iommu_dma_domain * @size: Size of buffer in bytes * @gfp: Allocation flags * @attrs: DMA attributes for this allocation * @prot: IOMMU mapping flags * @handle: Out argument for allocated DMA handle * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the * given VA/PA are visible to the given non-coherent device. * * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, * but an IOMMU which supports smaller pages might not map the whole thing. * * Return: Array of struct page pointers describing the buffer, * or NULL on failure. */ struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, unsigned long attrs, int prot, dma_addr_t *handle, void (*flush_page)(struct device *, const void *, phys_addr_t)) { struct iommu_domain *domain = iommu_get_domain_for_dev(dev); struct iova_domain *iovad = cookie_iovad(domain); struct iova *iova; struct page **pages; struct sg_table sgt; dma_addr_t dma_addr; unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; *handle = DMA_ERROR_CODE; min_size = alloc_sizes & -alloc_sizes; if (min_size < PAGE_SIZE) { min_size = PAGE_SIZE; alloc_sizes |= PAGE_SIZE; } else { size = ALIGN(size, min_size); } if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) alloc_sizes = min_size; count = PAGE_ALIGN(size) >> PAGE_SHIFT; pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); if (!pages) return NULL; iova = __alloc_iova(domain, size, dev->coherent_dma_mask); if (!iova) goto out_free_pages; size = iova_align(iovad, size); if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) goto out_free_iova; if (!(prot & IOMMU_CACHE)) { struct sg_mapping_iter miter; /* * The CPU-centric flushing implied by SG_MITER_TO_SG isn't * sufficient here, so skip it by using the "wrong" direction. */ sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); while (sg_miter_next(&miter)) flush_page(dev, miter.addr, page_to_phys(miter.page)); sg_miter_stop(&miter); } dma_addr = iova_dma_addr(iovad, iova); if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot) < size) goto out_free_sg; *handle = dma_addr; sg_free_table(&sgt); return pages; out_free_sg: sg_free_table(&sgt); out_free_iova: __free_iova(iovad, iova); out_free_pages: __iommu_dma_free_pages(pages, count); return NULL; } /** * iommu_dma_mmap - Map a buffer into provided user VMA * @pages: Array representing buffer from iommu_dma_alloc() * @size: Size of buffer in bytes * @vma: VMA describing requested userspace mapping * * Maps the pages of the buffer in @pages into @vma. The caller is responsible * for verifying the correct size and protection of @vma beforehand. */ int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) { unsigned long uaddr = vma->vm_start; unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; int ret = -ENXIO; for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { ret = vm_insert_page(vma, uaddr, pages[i]); if (ret) break; uaddr += PAGE_SIZE; } return ret; } dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, int prot) { dma_addr_t dma_addr; struct iommu_domain *domain = iommu_get_domain_for_dev(dev); struct iova_domain *iovad = cookie_iovad(domain); phys_addr_t phys = page_to_phys(page) + offset; size_t iova_off = iova_offset(iovad, phys); size_t len = iova_align(iovad, size + iova_off); struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev)); if (!iova) return DMA_ERROR_CODE; dma_addr = iova_dma_addr(iovad, iova); if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) { __free_iova(iovad, iova); return DMA_ERROR_CODE; } return dma_addr + iova_off; } void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir, unsigned long attrs) { __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); } /* * Prepare a successfully-mapped scatterlist to give back to the caller. * * At this point the segments are already laid out by iommu_dma_map_sg() to * avoid individually crossing any boundaries, so we merely need to check a * segment's start address to avoid concatenating across one. */ static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, dma_addr_t dma_addr) { struct scatterlist *s, *cur = sg; unsigned long seg_mask = dma_get_seg_boundary(dev); unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); int i, count = 0; for_each_sg(sg, s, nents, i) { /* Restore this segment's original unaligned fields first */ unsigned int s_iova_off = sg_dma_address(s); unsigned int s_length = sg_dma_len(s); unsigned int s_iova_len = s->length; if (sg_page(s) == NULL) s_iova_off = 0; s->offset += s_iova_off; s->length = s_length; sg_dma_address(s) = DMA_ERROR_CODE; sg_dma_len(s) = 0; /* * Now fill in the real DMA data. If... * - there is a valid output segment to append to * - and this segment starts on an IOVA page boundary * - but doesn't fall at a segment boundary * - and wouldn't make the resulting output segment too long */ if (cur_len && !s_iova_off && (dma_addr & seg_mask) && (cur_len + s_length <= max_len)) { /* ...then concatenate it with the previous one */ cur_len += s_length; } else { /* Otherwise start the next output segment */ if (i > 0) cur = sg_next(cur); cur_len = s_length; count++; sg_dma_address(cur) = dma_addr + s_iova_off; } sg_dma_len(cur) = cur_len; dma_addr += s_iova_len; if (s_length + s_iova_off < s_iova_len) cur_len = 0; } return count; } /* * If mapping failed, then just restore the original list, * but making sure the DMA fields are invalidated. */ static void __invalidate_sg(struct scatterlist *sg, int nents) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { if (sg_dma_address(s) != DMA_ERROR_CODE) s->offset += sg_dma_address(s); if (sg_dma_len(s)) s->length = sg_dma_len(s); sg_dma_address(s) = DMA_ERROR_CODE; sg_dma_len(s) = 0; } } /* * The DMA API client is passing in a scatterlist which could describe * any old buffer layout, but the IOMMU API requires everything to be * aligned to IOMMU pages. Hence the need for this complicated bit of * impedance-matching, to be able to hand off a suitably-aligned list, * but still preserve the original offsets and sizes for the caller. */ int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, int prot) { struct iommu_domain *domain = iommu_get_domain_for_dev(dev); struct iova_domain *iovad = cookie_iovad(domain); struct iova *iova; struct scatterlist *s, *prev = NULL; dma_addr_t dma_addr; size_t iova_len = 0; unsigned long mask = dma_get_seg_boundary(dev); int i; /* * Work out how much IOVA space we need, and align the segments to * IOVA granules for the IOMMU driver to handle. With some clever * trickery we can modify the list in-place, but reversibly, by * stashing the unaligned parts in the as-yet-unused DMA fields. */ for_each_sg(sg, s, nents, i) { size_t s_iova_off = iova_offset(iovad, s->offset); size_t s_length = s->length; size_t pad_len = (mask - iova_len + 1) & mask; if (sg_page(s)) { sg_dma_address(s) = s_iova_off; sg_dma_len(s) = s_length; s->offset -= s_iova_off; s->length = s_length; s_length = iova_align(iovad, s_length + s_iova_off); /* * Due to the alignment of our single IOVA allocation, we can * depend on these assumptions about the segment boundary mask: * - If mask size >= IOVA size, then the IOVA range cannot * possibly fall across a boundary, so we don't care. * - If mask size < IOVA size, then the IOVA range must start * exactly on a boundary, therefore we can lay things out * based purely on segment lengths without needing to know * the actual addresses beforehand. * - The mask must be a power of 2, so pad_len == 0 if * iova_len == 0, thus we cannot dereference prev the first * time through here (i.e. before it has a meaningful value). */ if (pad_len && pad_len < s_length - 1) { prev->length += pad_len; iova_len += pad_len; } } iova_len += s_length; prev = s; } iova = __alloc_iova(domain, iova_len, dma_get_mask(dev)); if (!iova) { pr_info("iommu map_sg2 size %zu, 0x%llx\n", iova_len, dma_get_mask(dev)); goto out_restore_sg; } /* * We'll leave any physical concatenation to the IOMMU driver's * implementation - it knows better than we do. */ dma_addr = iova_dma_addr(iovad, iova); if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len) goto out_free_iova; return __finalise_sg(dev, sg, nents, dma_addr); out_free_iova: __free_iova(iovad, iova); out_restore_sg: __invalidate_sg(sg, nents); return 0; } void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { /* * The scatterlist segments are mapped into a single * contiguous IOVA allocation, so this is incredibly easy. */ __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg)); } int iommu_dma_supported(struct device *dev, u64 mask) { /* * 'Special' IOMMUs which don't have the same addressing capability * as the CPU will have to wait until we have some way to query that * before they'll be able to use this framework. */ return 1; } int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return dma_addr == DMA_ERROR_CODE; } static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, phys_addr_t msi_addr, struct iommu_domain *domain) { struct iommu_dma_cookie *cookie = domain->iova_cookie; struct iommu_dma_msi_page *msi_page; struct iova_domain *iovad = &cookie->iovad; struct iova *iova; int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; msi_addr &= ~(phys_addr_t)iova_mask(iovad); list_for_each_entry(msi_page, &cookie->msi_page_list, list) if (msi_page->phys == msi_addr) return msi_page; msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); if (!msi_page) return NULL; iova = __alloc_iova(domain, iovad->granule, dma_get_mask(dev)); if (!iova) goto out_free_page; msi_page->phys = msi_addr; msi_page->iova = iova_dma_addr(iovad, iova); if (iommu_map(domain, msi_page->iova, msi_addr, iovad->granule, prot)) goto out_free_iova; INIT_LIST_HEAD(&msi_page->list); list_add(&msi_page->list, &cookie->msi_page_list); return msi_page; out_free_iova: __free_iova(iovad, iova); out_free_page: kfree(msi_page); return NULL; } void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) { struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); struct iommu_domain *domain = iommu_get_domain_for_dev(dev); struct iommu_dma_cookie *cookie; struct iommu_dma_msi_page *msi_page; phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; unsigned long flags; if (!domain || !domain->iova_cookie) return; cookie = domain->iova_cookie; /* * We disable IRQs to rule out a possible inversion against * irq_desc_lock if, say, someone tries to retarget the affinity * of an MSI from within an IPI handler. */ spin_lock_irqsave(&cookie->msi_lock, flags); msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); spin_unlock_irqrestore(&cookie->msi_lock, flags); if (WARN_ON(!msi_page)) { /* * We're called from a void callback, so the best we can do is * 'fail' by filling the message with obviously bogus values. * Since we got this far due to an IOMMU being present, it's * not like the existing address would have worked anyway... */ msg->address_hi = ~0U; msg->address_lo = ~0U; msg->data = ~0U; } else { msg->address_hi = upper_32_bits(msi_page->iova); msg->address_lo &= iova_mask(&cookie->iovad); msg->address_lo += lower_32_bits(msi_page->iova); } }