huawei-mrd-kernel/arch/cris/arch-v32/kernel/time.c

344 lines
8.7 KiB
C

/*
* linux/arch/cris/arch-v32/kernel/time.c
*
* Copyright (C) 2003-2010 Axis Communications AB
*
*/
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/swap.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/cpufreq.h>
#include <linux/sched_clock.h>
#include <linux/mm.h>
#include <asm/types.h>
#include <asm/signal.h>
#include <asm/io.h>
#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <hwregs/reg_map.h>
#include <hwregs/reg_rdwr.h>
#include <hwregs/timer_defs.h>
#include <hwregs/intr_vect_defs.h>
#ifdef CONFIG_CRIS_MACH_ARTPEC3
#include <hwregs/clkgen_defs.h>
#endif
/* Watchdog defines */
#define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
#define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
/* Number of 763 counts before watchdog bites */
#define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
#define CRISV32_TIMER_FREQ (100000000lu)
unsigned long timer_regs[NR_CPUS] =
{
regi_timer0,
};
extern int set_rtc_mmss(unsigned long nowtime);
#ifdef CONFIG_CPU_FREQ
static int cris_time_freq_notifier(struct notifier_block *nb,
unsigned long val, void *data);
static struct notifier_block cris_time_freq_notifier_block = {
.notifier_call = cris_time_freq_notifier,
};
#endif
unsigned long get_ns_in_jiffie(void)
{
reg_timer_r_tmr0_data data;
unsigned long ns;
data = REG_RD(timer, regi_timer0, r_tmr0_data);
ns = (TIMER0_DIV - data) * 10;
return ns;
}
/* From timer MDS describing the hardware watchdog:
* 4.3.1 Watchdog Operation
* The watchdog timer is an 8-bit timer with a configurable start value.
* Once started the watchdog counts downwards with a frequency of 763 Hz
* (100/131072 MHz). When the watchdog counts down to 1, it generates an
* NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
* chip.
*/
/* This gives us 1.3 ms to do something useful when the NMI comes */
/* Right now, starting the watchdog is the same as resetting it */
#define start_watchdog reset_watchdog
#if defined(CONFIG_ETRAX_WATCHDOG)
static short int watchdog_key = 42; /* arbitrary 7 bit number */
#endif
/* Number of pages to consider "out of memory". It is normal that the memory
* is used though, so set this really low. */
#define WATCHDOG_MIN_FREE_PAGES 8
#if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
/* for reliable NICE_DOGGY behaviour */
static int bite_in_progress;
#endif
void reset_watchdog(void)
{
#if defined(CONFIG_ETRAX_WATCHDOG)
reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
#if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
if (unlikely(bite_in_progress))
return;
#endif
/* Only keep watchdog happy as long as we have memory left! */
if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
/* Reset the watchdog with the inverse of the old key */
/* Invert key, which is 7 bits */
watchdog_key ^= ETRAX_WD_KEY_MASK;
wd_ctrl.cnt = ETRAX_WD_CNT;
wd_ctrl.cmd = regk_timer_start;
wd_ctrl.key = watchdog_key;
REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
}
#endif
}
/* stop the watchdog - we still need the correct key */
void stop_watchdog(void)
{
#if defined(CONFIG_ETRAX_WATCHDOG)
reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
wd_ctrl.cnt = ETRAX_WD_CNT;
wd_ctrl.cmd = regk_timer_stop;
wd_ctrl.key = watchdog_key;
REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
#endif
}
extern void show_registers(struct pt_regs *regs);
void handle_watchdog_bite(struct pt_regs *regs)
{
#if defined(CONFIG_ETRAX_WATCHDOG)
extern int cause_of_death;
nmi_enter();
oops_in_progress = 1;
#if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
bite_in_progress = 1;
#endif
printk(KERN_WARNING "Watchdog bite\n");
/* Check if forced restart or unexpected watchdog */
if (cause_of_death == 0xbedead) {
#ifdef CONFIG_CRIS_MACH_ARTPEC3
/* There is a bug in Artpec-3 (voodoo TR 78) that requires
* us to go to lower frequency for the reset to be reliable
*/
reg_clkgen_rw_clk_ctrl ctrl =
REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
ctrl.pll = 0;
REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
#endif
while(1);
}
/* Unexpected watchdog, stop the watchdog and dump registers. */
stop_watchdog();
printk(KERN_WARNING "Oops: bitten by watchdog\n");
show_registers(regs);
oops_in_progress = 0;
printk("\n"); /* Flush mtdoops. */
#ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
reset_watchdog();
#endif
while(1) /* nothing */;
#endif
}
extern void cris_profile_sample(struct pt_regs *regs);
static void __iomem *timer_base;
static int crisv32_clkevt_switch_state(struct clock_event_device *dev)
{
reg_timer_rw_tmr0_ctrl ctrl = {
.op = regk_timer_hold,
.freq = regk_timer_f100,
};
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
return 0;
}
static int crisv32_clkevt_next_event(unsigned long evt,
struct clock_event_device *dev)
{
reg_timer_rw_tmr0_ctrl ctrl = {
.op = regk_timer_ld,
.freq = regk_timer_f100,
};
REG_WR(timer, timer_base, rw_tmr0_div, evt);
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
ctrl.op = regk_timer_run;
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
return 0;
}
static irqreturn_t crisv32_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
reg_timer_rw_tmr0_ctrl ctrl = {
.op = regk_timer_hold,
.freq = regk_timer_f100,
};
reg_timer_rw_ack_intr ack = { .tmr0 = 1 };
reg_timer_r_masked_intr intr;
intr = REG_RD(timer, timer_base, r_masked_intr);
if (!intr.tmr0)
return IRQ_NONE;
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
REG_WR(timer, timer_base, rw_ack_intr, ack);
reset_watchdog();
#ifdef CONFIG_SYSTEM_PROFILER
cris_profile_sample(get_irq_regs());
#endif
evt->event_handler(evt);
return IRQ_HANDLED;
}
static struct clock_event_device crisv32_clockevent = {
.name = "crisv32-timer",
.rating = 300,
.features = CLOCK_EVT_FEAT_ONESHOT,
.set_state_oneshot = crisv32_clkevt_switch_state,
.set_state_shutdown = crisv32_clkevt_switch_state,
.tick_resume = crisv32_clkevt_switch_state,
.set_next_event = crisv32_clkevt_next_event,
};
/* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */
static struct irqaction irq_timer = {
.handler = crisv32_timer_interrupt,
.flags = IRQF_TIMER | IRQF_SHARED,
.name = "crisv32-timer",
.dev_id = &crisv32_clockevent,
};
static u64 notrace crisv32_timer_sched_clock(void)
{
return REG_RD(timer, timer_base, r_time);
}
static void __init crisv32_timer_init(void)
{
reg_timer_rw_intr_mask timer_intr_mask;
reg_timer_rw_tmr0_ctrl ctrl = {
.op = regk_timer_hold,
.freq = regk_timer_f100,
};
REG_WR(timer, timer_base, rw_tmr0_ctrl, ctrl);
timer_intr_mask = REG_RD(timer, timer_base, rw_intr_mask);
timer_intr_mask.tmr0 = 1;
REG_WR(timer, timer_base, rw_intr_mask, timer_intr_mask);
}
void __init time_init(void)
{
int irq;
int ret;
/* Probe for the RTC and read it if it exists.
* Before the RTC can be probed the loops_per_usec variable needs
* to be initialized to make usleep work. A better value for
* loops_per_usec is calculated by the kernel later once the
* clock has started.
*/
loops_per_usec = 50;
irq = TIMER0_INTR_VECT;
timer_base = (void __iomem *) regi_timer0;
crisv32_timer_init();
sched_clock_register(crisv32_timer_sched_clock, 32,
CRISV32_TIMER_FREQ);
clocksource_mmio_init(timer_base + REG_RD_ADDR_timer_r_time,
"crisv32-timer", CRISV32_TIMER_FREQ,
300, 32, clocksource_mmio_readl_up);
crisv32_clockevent.cpumask = cpu_possible_mask;
crisv32_clockevent.irq = irq;
ret = setup_irq(irq, &irq_timer);
if (ret)
pr_warn("failed to setup irq %d\n", irq);
clockevents_config_and_register(&crisv32_clockevent,
CRISV32_TIMER_FREQ,
2, 0xffffffff);
/* Enable watchdog if we should use one. */
#if defined(CONFIG_ETRAX_WATCHDOG)
printk(KERN_INFO "Enabling watchdog...\n");
start_watchdog();
/* If we use the hardware watchdog, we want to trap it as an NMI
* and dump registers before it resets us. For this to happen, we
* must set the "m" NMI enable flag (which once set, is unset only
* when an NMI is taken). */
{
unsigned long flags;
local_save_flags(flags);
flags |= (1<<30); /* NMI M flag is at bit 30 */
local_irq_restore(flags);
}
#endif
#ifdef CONFIG_CPU_FREQ
cpufreq_register_notifier(&cris_time_freq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
#endif
}
#ifdef CONFIG_CPU_FREQ
static int cris_time_freq_notifier(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_freqs *freqs = data;
if (val == CPUFREQ_POSTCHANGE) {
reg_timer_r_tmr0_data data;
reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
do {
data = REG_RD(timer, timer_regs[freqs->cpu],
r_tmr0_data);
} while (data > 20);
REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
}
return 0;
}
#endif