huawei-mrd-kernel/drivers/dma/8250_mtk_dma.c

1038 lines
26 KiB
C

/*
* Mediatek 8250 DMA driver.
*
* Copyright (c) 2017 MediaTek Inc.
* Author: Long Cheng <long.cheng@mediatek.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "mtk-8250-dma: " fmt
#define DRV_NAME "mtk-8250-dma"
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/pm_runtime.h>
#include "virt-dma.h"
#define MTK_SDMA_REQUESTS 127
#define MTK_SDMA_CHANNELS (CONFIG_SERIAL_8250_NR_UARTS * 2)
#define VFF_RX_INT_FLAG_CLR_B (BIT(0) | BIT(1))
#define VFF_TX_INT_FLAG_CLR_B 0
#define VFF_RX_INT_EN0_B BIT(0) /*rx valid size >= vff thre */
#define VFF_RX_INT_EN1_B BIT(1)
#define VFF_TX_INT_EN_B BIT(0) /*tx left size >= vff thre */
#define VFF_INT_EN_CLR_B 0
#define VFF_WARM_RST_B BIT(0)
#define VFF_EN_B BIT(0)
#define VFF_STOP_B BIT(0)
#define VFF_STOP_CLR_B 0
#define VFF_FLUSH_B BIT(0)
#define VFF_FLUSH_CLR_B 0
#define VFF_4G_SUPPORT_B BIT(0)
#define VFF_4G_SUPPORT_CLR_B 0
#define VFF_TX_THRE(n) ((n)*7/8) /* interrupt trigger level for tx */
#define VFF_RX_THRE(n) ((n)*3/4) /* interrupt trigger level for rx */
#define MTK_DMA_RING_SIZE 0xffffU
/* invert this bit when wrap ring head again*/
#define MTK_DMA_RING_WRAP 0x10000U
struct mtk_dmadev {
struct dma_device ddev;
void __iomem *mem_base[MTK_SDMA_CHANNELS];
spinlock_t lock;
struct tasklet_struct task;
struct list_head pending;
struct clk *clk;
unsigned int dma_requests;
bool support_33bits;
unsigned int dma_irq[MTK_SDMA_CHANNELS];
struct mtk_chan *lch_map[MTK_SDMA_CHANNELS];
};
struct mtk_chan {
struct virt_dma_chan vc;
struct list_head node;
struct dma_slave_config cfg;
void __iomem *channel_base;
struct mtk_dma_desc *desc;
bool paused;
bool requested;
unsigned int dma_sig;
unsigned int dma_ch;
unsigned int sgidx;
unsigned int remain_size;
unsigned int rx_ptr;
/*sync*/
struct completion done; /* dma transfer done */
spinlock_t lock;
atomic_t loopcnt;
atomic_t entry; /* entry count */
};
struct mtk_dma_sg {
dma_addr_t addr;
unsigned int en; /* number of elements (24-bit) */
unsigned int fn; /* number of frames (16-bit) */
};
struct mtk_dma_desc {
struct virt_dma_desc vd;
enum dma_transfer_direction dir;
dma_addr_t dev_addr;
unsigned int sglen;
struct mtk_dma_sg sg[0];
};
enum {
VFF_INT_FLAG = 0x00,
VFF_INT_EN = 0x04,
VFF_EN = 0x08,
VFF_RST = 0x0c,
VFF_STOP = 0x10,
VFF_FLUSH = 0x14,
VFF_ADDR = 0x1c,
VFF_LEN = 0x24,
VFF_THRE = 0x28,
VFF_WPT = 0x2c,
VFF_RPT = 0x30,
/*TX: the buffer size HW can read. RX: the buffer size SW can read.*/
VFF_VALID_SIZE = 0x3c,
/*TX: the buffer size SW can write. RX: the buffer size HW can write.*/
VFF_LEFT_SIZE = 0x40,
VFF_DEBUG_STATUS = 0x50,
VFF_4G_SUPPORT = 0x54,
};
static bool mtk_dma_filter_fn(struct dma_chan *chan, void *param);
static struct of_dma_filter_info mtk_dma_info = {
.filter_fn = mtk_dma_filter_fn,
};
static inline struct mtk_dmadev *to_mtk_dma_dev(struct dma_device *d)
{
return container_of(d, struct mtk_dmadev, ddev);
}
static inline struct mtk_chan *to_mtk_dma_chan(struct dma_chan *c)
{
return container_of(c, struct mtk_chan, vc.chan);
}
static inline struct mtk_dma_desc *to_mtk_dma_desc(struct dma_async_tx_descriptor *t)
{
return container_of(t, struct mtk_dma_desc, vd.tx);
}
static void mtk_dma_chan_write(struct mtk_chan *c, unsigned int reg, unsigned int val)
{
writel(val, c->channel_base + reg);
}
static unsigned int mtk_dma_chan_read(struct mtk_chan *c, unsigned int reg)
{
return readl(c->channel_base + reg);
}
static void mtk_dma_desc_free(struct virt_dma_desc *vd)
{
struct dma_chan *chan = vd->tx.chan;
struct mtk_chan *c = to_mtk_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&c->vc.lock, flags);
if (c->desc != NULL) {
kfree(c->desc);
c->desc = NULL;
if (c->cfg.direction == DMA_DEV_TO_MEM)
atomic_dec(&c->entry);
}
spin_unlock_irqrestore(&c->vc.lock, flags);
}
static int mtk_dma_clk_enable(struct mtk_dmadev *mtkd)
{
int rc;
rc = clk_prepare_enable(mtkd->clk);
if (rc) {
pr_err("Couldn't enable the clock\n");
return rc;
}
return 0;
}
static void mtk_dma_clk_disable(struct mtk_dmadev *mtkd)
{
clk_disable_unprepare(mtkd->clk);
}
static void mtk_dma_remove_virt_list(dma_cookie_t cookie, struct virt_dma_chan *vc)
{
struct virt_dma_desc *vd;
if (list_empty(&vc->desc_issued) == 0) {
list_for_each_entry(vd, &vc->desc_issued, node) {
if (cookie == vd->tx.cookie) {
INIT_LIST_HEAD(&vc->desc_issued);
break;
}
}
}
}
static void mtk_dma_tx_flush(struct dma_chan *chan)
{
struct mtk_chan *c = to_mtk_dma_chan(chan);
if (mtk_dma_chan_read(c, VFF_FLUSH) == 0) {
mtk_dma_chan_write(c, VFF_FLUSH, VFF_FLUSH_B);
if (atomic_dec_and_test(&c->loopcnt))
complete(&c->done);
}
}
/*
* check whether the dma flush operation is finished or not.
* return 0 for flush success.
* return others for flush timeout.
*/
static int mtk_dma_check_flush_result(struct dma_chan *chan)
{
struct timespec start, end;
struct mtk_chan *c = to_mtk_dma_chan(chan);
start = ktime_to_timespec(ktime_get());
while (mtk_dma_chan_read(c, VFF_FLUSH)) {
end = ktime_to_timespec(ktime_get());
if ((end.tv_sec - start.tv_sec) > 1 ||
((end.tv_sec - start.tv_sec) == 1 && end.tv_nsec > start.tv_nsec)) {
pr_err("[DMA] Polling flush timeout\n");
return -1;
}
}
return 0;
}
static void mtk_dma_tx_write(struct dma_chan *chan)
{
struct mtk_chan *c = to_mtk_dma_chan(chan);
struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device);
unsigned int txcount = c->remain_size;
unsigned int len, send, left, wpt, wrap;
if (atomic_inc_return(&c->entry) > 1) {
if (vchan_issue_pending(&c->vc) && (c->desc == NULL)) {
spin_lock(&mtkd->lock);
list_add_tail(&c->node, &mtkd->pending);
spin_unlock(&mtkd->lock);
tasklet_schedule(&mtkd->task);
}
} else {
len = mtk_dma_chan_read(c, VFF_LEN);
if (mtk_dma_check_flush_result(chan) != 0)
return;
while ((left = mtk_dma_chan_read(c, VFF_LEFT_SIZE)) > 0U) {
send = min(left, c->remain_size);
wpt = mtk_dma_chan_read(c, VFF_WPT);
wrap = wpt & MTK_DMA_RING_WRAP ? 0 : MTK_DMA_RING_WRAP;
if ((wpt & (len - 1U)) + send < len)
mtk_dma_chan_write(c, VFF_WPT, wpt + send);
else
mtk_dma_chan_write(c, VFF_WPT,
((wpt + send) & (len - 1U)) | wrap);
c->remain_size -= send;
if (c->remain_size == 0U)
break;
}
if (txcount != c->remain_size) {
mtk_dma_chan_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
mtk_dma_tx_flush(chan);
}
}
atomic_dec(&c->entry);
}
static void mtk_dma_start_tx(struct mtk_chan *c)
{
if (mtk_dma_chan_read(c, VFF_LEFT_SIZE) == 0U) {
pr_info("%s maybe need fix? @L %d\n", __func__, __LINE__);
mtk_dma_chan_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
} else {
reinit_completion(&c->done);
/* inc twice, once for tx_flush, another for tx_interrupt */
atomic_inc(&c->loopcnt);
atomic_inc(&c->loopcnt);
mtk_dma_tx_write(&c->vc.chan);
}
c->paused = false;
}
static void mtk_dma_get_rx_size(struct mtk_chan *c)
{
unsigned int count;
unsigned int rdptr, wrptr, wrreg, rdreg;
unsigned int rx_size = mtk_dma_chan_read(c, VFF_LEN);
rdreg = mtk_dma_chan_read(c, VFF_RPT);
wrreg = mtk_dma_chan_read(c, VFF_WPT);
rdptr = rdreg & MTK_DMA_RING_SIZE;
wrptr = wrreg & MTK_DMA_RING_SIZE;
count = ((rdreg ^ wrreg) & MTK_DMA_RING_WRAP) ?
(wrptr + rx_size - rdptr) : (wrptr - rdptr);
c->remain_size = count;
c->rx_ptr = rdptr;
mtk_dma_chan_write(c, VFF_RPT, wrreg);
}
static void mtk_dma_start_rx(struct mtk_chan *c)
{
struct dma_chan *chan = &(c->vc.chan);
struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device);
struct mtk_dma_desc *d = c->desc;
if (mtk_dma_chan_read(c, VFF_VALID_SIZE) != 0U &&
d != NULL && d->vd.tx.cookie != 0) {
mtk_dma_get_rx_size(c);
mtk_dma_remove_virt_list(d->vd.tx.cookie, &c->vc);
vchan_cookie_complete(&d->vd);
} else {
if (mtk_dma_chan_read(c, VFF_VALID_SIZE) != 0U) {
spin_lock(&mtkd->lock);
if (list_empty(&mtkd->pending))
list_add_tail(&c->node, &mtkd->pending);
spin_unlock(&mtkd->lock);
tasklet_schedule(&mtkd->task);
} else {
if (atomic_read(&c->entry) > 0UL)
atomic_set(&c->entry, 0);
}
}
}
static void mtk_dma_reset(struct mtk_chan *c)
{
struct mtk_dmadev *mtkd = to_mtk_dma_dev(c->vc.chan.device);
mtk_dma_chan_write(c, VFF_ADDR, 0);
mtk_dma_chan_write(c, VFF_THRE, 0);
mtk_dma_chan_write(c, VFF_LEN, 0);
mtk_dma_chan_write(c, VFF_RST, VFF_WARM_RST_B);
while
(mtk_dma_chan_read(c, VFF_EN));
if (c->cfg.direction == DMA_DEV_TO_MEM)
mtk_dma_chan_write(c, VFF_RPT, 0);
else if (c->cfg.direction == DMA_MEM_TO_DEV)
mtk_dma_chan_write(c, VFF_WPT, 0);
else
pr_info("Unknown direction.\n");
if (mtkd->support_33bits)
mtk_dma_chan_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B);
}
static void mtk_dma_stop(struct mtk_chan *c)
{
int polling_cnt;
mtk_dma_chan_write(c, VFF_FLUSH, VFF_FLUSH_CLR_B);
polling_cnt = 0;
while (mtk_dma_chan_read(c, VFF_FLUSH)) {
if (polling_cnt++ > 10000) {
pr_err("dma stop: polling FLUSH fail, DEBUG=0x%x\n",
mtk_dma_chan_read(c, VFF_DEBUG_STATUS));
break;
}
}
polling_cnt = 0;
/*set stop as 1 -> wait until en is 0 -> set stop as 0*/
mtk_dma_chan_write(c, VFF_STOP, VFF_STOP_B);
while (mtk_dma_chan_read(c, VFF_EN)) {
if (polling_cnt++ > 10000) {
pr_err("dma stop: polling VFF_EN fail, DEBUG=0x%x\n",
mtk_dma_chan_read(c, VFF_DEBUG_STATUS));
break;
}
}
mtk_dma_chan_write(c, VFF_STOP, VFF_STOP_CLR_B);
mtk_dma_chan_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
if (c->cfg.direction == DMA_DEV_TO_MEM)
mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_RX_INT_FLAG_CLR_B);
else
mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_TX_INT_FLAG_CLR_B);
c->paused = true;
}
/*
* We need to deal with 'all channels in-use'
*/
static void mtk_dma_rx_sched(struct mtk_chan *c)
{
struct dma_chan *chan = &(c->vc.chan);
struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device);
if (atomic_read(&c->entry) < 1) {
mtk_dma_start_rx(c);
} else {
spin_lock(&mtkd->lock);
if (list_empty(&mtkd->pending))
list_add_tail(&c->node, &mtkd->pending);
spin_unlock(&mtkd->lock);
tasklet_schedule(&mtkd->task);
}
}
/*
* This callback schedules all pending channels. We could be more
* clever here by postponing allocation of the real DMA channels to
* this point, and freeing them when our virtual channel becomes idle.
*
* We would then need to deal with 'all channels in-use'
*/
static void mtk_dma_sched(unsigned long data)
{
struct mtk_dmadev *mtkd = (struct mtk_dmadev *)data;
struct mtk_chan *c;
struct virt_dma_desc *vd;
dma_cookie_t cookie;
LIST_HEAD(head);
unsigned long flags;
spin_lock_irq(&mtkd->lock);
list_splice_tail_init(&mtkd->pending, &head);
spin_unlock_irq(&mtkd->lock);
if (list_empty(&head) == 0) {
c = list_first_entry(&head, struct mtk_chan, node);
cookie = c->vc.chan.cookie;
spin_lock_irqsave(&c->vc.lock, flags);
if (c->cfg.direction == DMA_DEV_TO_MEM) {
list_del_init(&c->node);
mtk_dma_rx_sched(c);
} else if (c->cfg.direction == DMA_MEM_TO_DEV) {
vd = vchan_find_desc(&c->vc, cookie);
c->desc = to_mtk_dma_desc(&vd->tx);
list_del_init(&c->node);
mtk_dma_start_tx(c);
}
spin_unlock_irqrestore(&c->vc.lock, flags);
}
}
static int mtk_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device);
struct mtk_chan *c = to_mtk_dma_chan(chan);
int ret;
pm_runtime_get_sync(mtkd->ddev.dev);
ret = -EBUSY;
if (mtkd->lch_map[c->dma_ch] == NULL) {
c->channel_base = mtkd->mem_base[c->dma_ch];
mtkd->lch_map[c->dma_ch] = c;
ret = 1;
}
c->requested = false;
mtk_dma_reset(c);
return ret;
}
static void mtk_dma_free_chan_resources(struct dma_chan *chan)
{
struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device);
struct mtk_chan *c = to_mtk_dma_chan(chan);
if (c->requested == true) {
c->requested = false;
free_irq(mtkd->dma_irq[c->dma_ch], chan);
}
c->channel_base = NULL;
mtkd->lch_map[c->dma_ch] = NULL;
vchan_free_chan_resources(&c->vc);
pr_debug("freeing channel for %u\n", c->dma_sig);
c->dma_sig = 0;
tasklet_kill(&mtkd->task);
pm_runtime_put_sync(mtkd->ddev.dev);
}
static enum dma_status mtk_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct mtk_chan *c = to_mtk_dma_chan(chan);
enum dma_status ret;
unsigned long flags;
ret = dma_cookie_status(chan, cookie, txstate);
spin_lock_irqsave(&c->vc.lock, flags);
if (ret == DMA_IN_PROGRESS) {
c->rx_ptr = mtk_dma_chan_read(c, VFF_RPT) & MTK_DMA_RING_SIZE;
txstate->residue = c->rx_ptr;
} else if (ret == DMA_COMPLETE && c->cfg.direction == DMA_DEV_TO_MEM) {
txstate->residue = c->remain_size;
} else {
txstate->residue = 0;
}
spin_unlock_irqrestore(&c->vc.lock, flags);
return ret;
}
static unsigned int mtk_dma_desc_size(struct mtk_dma_desc *d)
{
struct mtk_dma_sg *sg;
unsigned int i;
unsigned int size;
for (size = i = 0; i < d->sglen; i++) {
sg = &d->sg[i];
size += sg->en * sg->fn;
}
return size;
}
static struct dma_async_tx_descriptor *mtk_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sglen,
enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
{
struct mtk_chan *c = to_mtk_dma_chan(chan);
enum dma_slave_buswidth dev_width;
struct scatterlist *sgent;
struct mtk_dma_desc *d;
dma_addr_t dev_addr;
unsigned int i, j, en, frame_bytes;
en = frame_bytes = 1;
if (dir == DMA_DEV_TO_MEM) {
dev_addr = c->cfg.src_addr;
dev_width = c->cfg.src_addr_width;
} else if (dir == DMA_MEM_TO_DEV) {
dev_addr = c->cfg.dst_addr;
dev_width = c->cfg.dst_addr_width;
} else {
pr_err("%s: bad direction?\n", __func__);
return NULL;
}
/* Now allocate and setup the descriptor. */
d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
if (d == NULL)
return NULL;
d->dir = dir;
d->dev_addr = dev_addr;
j = 0;
for_each_sg(sgl, sgent, sglen, i) {
d->sg[j].addr = sg_dma_address(sgent);
d->sg[j].en = en;
d->sg[j].fn = sg_dma_len(sgent) / frame_bytes;
j++;
}
d->sglen = j;
if (dir == DMA_MEM_TO_DEV)
c->remain_size = mtk_dma_desc_size(d);
return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}
static void mtk_dma_issue_pending(struct dma_chan *chan)
{
struct mtk_chan *c = to_mtk_dma_chan(chan);
struct mtk_dmadev *mtkd;
struct virt_dma_desc *vd;
dma_cookie_t cookie;
unsigned long flags;
spin_lock_irqsave(&c->vc.lock, flags);
if (c->cfg.direction == DMA_DEV_TO_MEM) {
cookie = c->vc.chan.cookie;
mtkd = to_mtk_dma_dev(chan->device);
if (vchan_issue_pending(&c->vc) && (c->desc == NULL)) {
vd = vchan_find_desc(&c->vc, cookie);
c->desc = to_mtk_dma_desc(&vd->tx);
if (atomic_read(&c->entry) > 0)
atomic_set(&c->entry, 0);
}
} else if (c->cfg.direction == DMA_MEM_TO_DEV) {
cookie = c->vc.chan.cookie;
if (vchan_issue_pending(&c->vc) && !c->desc) {
vd = vchan_find_desc(&c->vc, cookie);
c->desc = to_mtk_dma_desc(&vd->tx);
mtk_dma_start_tx(c);
}
}
spin_unlock_irqrestore(&c->vc.lock, flags);
}
static irqreturn_t mtk_dma_rx_interrupt(int irq, void *dev_id)
{
struct dma_chan *chan = (struct dma_chan *)dev_id;
struct mtk_chan *c = to_mtk_dma_chan(chan);
struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device);
unsigned long flags;
spin_lock_irqsave(&c->vc.lock, flags);
mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_RX_INT_FLAG_CLR_B);
if (atomic_inc_return(&c->entry) > 1) {
if (list_empty(&mtkd->pending))
list_add_tail(&c->node, &mtkd->pending);
tasklet_schedule(&mtkd->task);
} else {
mtk_dma_start_rx(c);
}
spin_unlock_irqrestore(&c->vc.lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t mtk_dma_tx_interrupt(int irq, void *dev_id)
{
struct dma_chan *chan = (struct dma_chan *)dev_id;
struct mtk_chan *c = to_mtk_dma_chan(chan);
struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device);
struct mtk_dma_desc *d = c->desc;
unsigned long flags;
spin_lock_irqsave(&c->vc.lock, flags);
if (c->remain_size != 0) {
list_add_tail(&c->node, &mtkd->pending);
tasklet_schedule(&mtkd->task);
} else {
mtk_dma_remove_virt_list(d->vd.tx.cookie, &c->vc);
vchan_cookie_complete(&d->vd);
}
spin_unlock_irqrestore(&c->vc.lock, flags);
mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_TX_INT_FLAG_CLR_B);
if (atomic_dec_and_test(&c->loopcnt))
complete(&c->done);
return IRQ_HANDLED;
}
static int mtk_dma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct mtk_chan *c = to_mtk_dma_chan(chan);
struct mtk_dmadev *mtkd = to_mtk_dma_dev(c->vc.chan.device);
int ret;
c->cfg = *cfg;
if (cfg->direction == DMA_DEV_TO_MEM) {
unsigned int rx_len = cfg->src_addr_width * 1024;
mtk_dma_chan_write(c, VFF_ADDR, cfg->src_addr);
mtk_dma_chan_write(c, VFF_LEN, rx_len);
mtk_dma_chan_write(c, VFF_THRE, VFF_RX_THRE(rx_len));
mtk_dma_chan_write(c, VFF_INT_EN, VFF_RX_INT_EN0_B | VFF_RX_INT_EN1_B);
mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_RX_INT_FLAG_CLR_B);
mtk_dma_chan_write(c, VFF_EN, VFF_EN_B);
if (c->requested == false) {
atomic_set(&c->entry, 0);
c->requested = true;
ret = request_irq(mtkd->dma_irq[c->dma_ch],
mtk_dma_rx_interrupt, IRQF_TRIGGER_NONE,
DRV_NAME, chan);
if (ret) {
pr_err("Cannot request rx dma IRQ\n");
return -EINVAL;
}
}
} else if (cfg->direction == DMA_MEM_TO_DEV) {
unsigned int tx_len = cfg->dst_addr_width * 1024;
mtk_dma_chan_write(c, VFF_ADDR, cfg->dst_addr);
mtk_dma_chan_write(c, VFF_LEN, tx_len);
mtk_dma_chan_write(c, VFF_THRE, VFF_TX_THRE(tx_len));
mtk_dma_chan_write(c, VFF_INT_FLAG, VFF_TX_INT_FLAG_CLR_B);
mtk_dma_chan_write(c, VFF_EN, VFF_EN_B);
if (c->requested == false) {
c->requested = true;
ret = request_irq(mtkd->dma_irq[c->dma_ch],
mtk_dma_tx_interrupt, IRQF_TRIGGER_NONE,
DRV_NAME, chan);
if (ret) {
pr_err("Cannot request tx dma IRQ\n");
return -EINVAL;
}
}
} else
pr_info("Unknown direction!\n");
if (mtkd->support_33bits)
mtk_dma_chan_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_B);
if (mtk_dma_chan_read(c, VFF_EN) != VFF_EN_B) {
pr_err("config dir%d dma fail\n", cfg->direction);
return -EINVAL;
}
return 0;
}
static int mtk_dma_terminate_all(struct dma_chan *chan)
{
struct mtk_chan *c = to_mtk_dma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
if (atomic_read(&c->loopcnt) != 0)
wait_for_completion(&c->done);
spin_lock_irqsave(&c->vc.lock, flags);
if (c->desc) {
mtk_dma_remove_virt_list(c->desc->vd.tx.cookie, &c->vc);
spin_unlock_irqrestore(&c->vc.lock, flags);
mtk_dma_desc_free(&c->desc->vd);
spin_lock_irqsave(&c->vc.lock, flags);
if (c->paused == false) {
list_del_init(&c->node);
mtk_dma_stop(c);
}
}
vchan_get_all_descriptors(&c->vc, &head);
spin_unlock_irqrestore(&c->vc.lock, flags);
vchan_dma_desc_free_list(&c->vc, &head);
return 0;
}
static int mtk_dma_device_pause(struct dma_chan *chan)
{
/* Pause/Resume only allowed with cyclic mode */
return -EINVAL;
}
static int mtk_dma_device_resume(struct dma_chan *chan)
{
/* Pause/Resume only allowed with cyclic mode */
return -EINVAL;
}
static int mtk_dma_chan_init(struct mtk_dmadev *mtkd)
{
struct mtk_chan *c;
c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL);
if (c == NULL)
return -ENOMEM;
c->vc.desc_free = mtk_dma_desc_free;
vchan_init(&c->vc, &mtkd->ddev);
spin_lock_init(&c->lock);
INIT_LIST_HEAD(&c->node);
init_completion(&c->done);
atomic_set(&c->loopcnt, 0);
atomic_set(&c->entry, 0);
return 0;
}
static void mtk_dma_free(struct mtk_dmadev *mtkd)
{
tasklet_kill(&mtkd->task);
while (list_empty(&mtkd->ddev.channels) == 0) {
struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels,
struct mtk_chan, vc.chan.device_node);
list_del(&c->vc.chan.device_node);
tasklet_kill(&c->vc.task);
devm_kfree(mtkd->ddev.dev, c);
}
}
static const struct of_device_id mtk_uart_dma_match[] = {
{ .compatible = "mediatek,mt6577-uart-dma", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mtk_uart_dma_match);
static int mtk_dma_probe(struct platform_device *pdev)
{
struct mtk_dmadev *mtkd;
struct resource *res;
int rc, i;
mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL);
if (mtkd == NULL)
return -ENOMEM;
for (i = 0; i < MTK_SDMA_CHANNELS; i++) {
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
if (res == NULL)
return -ENODEV;
mtkd->mem_base[i] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mtkd->mem_base[i]))
return PTR_ERR(mtkd->mem_base[i]);
}
/* request irq */
for (i = 0; i < MTK_SDMA_CHANNELS; i++) {
mtkd->dma_irq[i] = platform_get_irq(pdev, i);
if ((int)mtkd->dma_irq[i] < 0) {
pr_err("Cannot claim IRQ%d\n", i);
return mtkd->dma_irq[i];
}
}
mtkd->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(mtkd->clk)) {
pr_err("No clock specified\n");
return PTR_ERR(mtkd->clk);
}
if (of_property_read_bool(pdev->dev.of_node, "dma-33bits")) {
pr_info("Support dma 33bits\n");
mtkd->support_33bits = true;
}
if (mtkd->support_33bits)
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(33));
else
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (rc)
return rc;
dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask);
mtkd->ddev.device_alloc_chan_resources = mtk_dma_alloc_chan_resources;
mtkd->ddev.device_free_chan_resources = mtk_dma_free_chan_resources;
mtkd->ddev.device_tx_status = mtk_dma_tx_status;
mtkd->ddev.device_issue_pending = mtk_dma_issue_pending;
mtkd->ddev.device_prep_slave_sg = mtk_dma_prep_slave_sg;
mtkd->ddev.device_config = mtk_dma_slave_config;
mtkd->ddev.device_pause = mtk_dma_device_pause;
mtkd->ddev.device_resume = mtk_dma_device_resume;
mtkd->ddev.device_terminate_all = mtk_dma_terminate_all;
mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
mtkd->ddev.dev = &pdev->dev;
INIT_LIST_HEAD(&mtkd->ddev.channels);
INIT_LIST_HEAD(&mtkd->pending);
spin_lock_init(&mtkd->lock);
tasklet_init(&mtkd->task, mtk_dma_sched, (unsigned long)mtkd);
mtkd->dma_requests = MTK_SDMA_REQUESTS;
if ((pdev->dev.of_node != NULL) &&
(of_property_read_u32(pdev->dev.of_node,
"dma-requests", &mtkd->dma_requests) != 0)) {
pr_info("Missing dma-requests property, using %u.\n",
MTK_SDMA_REQUESTS);
}
for (i = 0; i < MTK_SDMA_CHANNELS; i++) {
rc = mtk_dma_chan_init(mtkd);
if (rc) {
goto err_no_dma;
}
}
pm_runtime_enable(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
rc = dma_async_device_register(&mtkd->ddev);
if (rc) {
pr_warn("fail to register slave DMA device: %d\n", rc);
mtk_dma_clk_disable(mtkd);
goto err_no_dma;
}
platform_set_drvdata(pdev, mtkd);
if (pdev->dev.of_node) {
mtk_dma_info.dma_cap = mtkd->ddev.cap_mask;
/* Device-tree DMA controller registration */
rc = of_dma_controller_register(pdev->dev.of_node,
of_dma_simple_xlate, &mtk_dma_info);
if (rc) {
pr_warn("fail to register DMA controller\n");
dma_async_device_unregister(&mtkd->ddev);
mtk_dma_clk_disable(mtkd);
goto err_no_dma;
}
}
return rc;
err_no_dma:
mtk_dma_free(mtkd);
return rc;
}
static int mtk_dma_remove(struct platform_device *pdev)
{
struct mtk_dmadev *mtkd = platform_get_drvdata(pdev);
if (pdev->dev.of_node)
of_dma_controller_free(pdev->dev.of_node);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
dma_async_device_unregister(&mtkd->ddev);
mtk_dma_free(mtkd);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mtk_dma_suspend(struct device *dev)
{
struct mtk_dmadev *mtkd = dev_get_drvdata(dev);
if (!pm_runtime_suspended(dev))
mtk_dma_clk_disable(mtkd);
return 0;
}
static int mtk_dma_resume(struct device *dev)
{
int ret;
struct mtk_dmadev *mtkd = dev_get_drvdata(dev);
if (!pm_runtime_suspended(dev)) {
ret = mtk_dma_clk_enable(mtkd);
if (ret) {
pr_info("fail to enable clk: %d\n", ret);
return ret;
}
}
return 0;
}
static int mtk_dma_runtime_suspend(struct device *dev)
{
struct mtk_dmadev *mtkd = dev_get_drvdata(dev);
mtk_dma_clk_disable(mtkd);
return 0;
}
static int mtk_dma_runtime_resume(struct device *dev)
{
int ret;
struct mtk_dmadev *mtkd = dev_get_drvdata(dev);
ret = mtk_dma_clk_enable(mtkd);
if (ret) {
pr_info("fail to enable clk: %d\n", ret);
return ret;
}
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops mtk_dma_pm = {
SET_SYSTEM_SLEEP_PM_OPS(mtk_dma_suspend, mtk_dma_resume)
SET_RUNTIME_PM_OPS(mtk_dma_runtime_suspend,
mtk_dma_runtime_resume, NULL)
};
static struct platform_driver mtk_dma_driver = {
.probe = mtk_dma_probe,
.remove = mtk_dma_remove,
.driver = {
.name = "mtk-8250-dma",
.pm = &mtk_dma_pm,
.of_match_table = of_match_ptr(mtk_uart_dma_match),
},
};
static bool mtk_dma_filter_fn(struct dma_chan *chan, void *param)
{
if (chan->device->dev->driver == &mtk_dma_driver.driver) {
struct mtk_dmadev *mtkd = to_mtk_dma_dev(chan->device);
struct mtk_chan *c = to_mtk_dma_chan(chan);
unsigned int req = *(unsigned int *)param;
if (req <= mtkd->dma_requests) {
c->dma_sig = req;
c->dma_ch = req;
return true;
}
}
return false;
}
static int mtk_dma_init(void)
{
return platform_driver_register(&mtk_dma_driver);
}
subsys_initcall(mtk_dma_init);
static void __exit mtk_dma_exit(void)
{
platform_driver_unregister(&mtk_dma_driver);
}
module_exit(mtk_dma_exit);