huawei-mrd-kernel/drivers/mtd/nand/lpc32xx_slc.c

1041 lines
29 KiB
C

/*
* NXP LPC32XX NAND SLC driver
*
* Authors:
* Kevin Wells <kevin.wells@nxp.com>
* Roland Stigge <stigge@antcom.de>
*
* Copyright © 2011 NXP Semiconductors
* Copyright © 2012 Roland Stigge
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/mtd/lpc32xx_slc.h>
#define LPC32XX_MODNAME "lpc32xx-nand"
/**********************************************************************
* SLC NAND controller register offsets
**********************************************************************/
#define SLC_DATA(x) (x + 0x000)
#define SLC_ADDR(x) (x + 0x004)
#define SLC_CMD(x) (x + 0x008)
#define SLC_STOP(x) (x + 0x00C)
#define SLC_CTRL(x) (x + 0x010)
#define SLC_CFG(x) (x + 0x014)
#define SLC_STAT(x) (x + 0x018)
#define SLC_INT_STAT(x) (x + 0x01C)
#define SLC_IEN(x) (x + 0x020)
#define SLC_ISR(x) (x + 0x024)
#define SLC_ICR(x) (x + 0x028)
#define SLC_TAC(x) (x + 0x02C)
#define SLC_TC(x) (x + 0x030)
#define SLC_ECC(x) (x + 0x034)
#define SLC_DMA_DATA(x) (x + 0x038)
/**********************************************************************
* slc_ctrl register definitions
**********************************************************************/
#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
/**********************************************************************
* slc_cfg register definitions
**********************************************************************/
#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
/**********************************************************************
* slc_stat register definitions
**********************************************************************/
#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
/**********************************************************************
* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
**********************************************************************/
#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
/**********************************************************************
* slc_tac register definitions
**********************************************************************/
/* Computation of clock cycles on basis of controller and device clock rates */
#define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
/* Clock setting for RDY write sample wait time in 2*n clocks */
#define SLCTAC_WDR(n) (((n) & 0xF) << 28)
/* Write pulse width in clock cycles, 1 to 16 clocks */
#define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
/* Write hold time of control and data signals, 1 to 16 clocks */
#define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
/* Write setup time of control and data signals, 1 to 16 clocks */
#define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
/* Clock setting for RDY read sample wait time in 2*n clocks */
#define SLCTAC_RDR(n) (((n) & 0xF) << 12)
/* Read pulse width in clock cycles, 1 to 16 clocks */
#define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
/* Read hold time of control and data signals, 1 to 16 clocks */
#define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
/* Read setup time of control and data signals, 1 to 16 clocks */
#define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
/**********************************************************************
* slc_ecc register definitions
**********************************************************************/
/* ECC line party fetch macro */
#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
#define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
/*
* DMA requires storage space for the DMA local buffer and the hardware ECC
* storage area. The DMA local buffer is only used if DMA mapping fails
* during runtime.
*/
#define LPC32XX_DMA_DATA_SIZE 4096
#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
/* Number of bytes used for ECC stored in NAND per 256 bytes */
#define LPC32XX_SLC_DEV_ECC_BYTES 3
/*
* If the NAND base clock frequency can't be fetched, this frequency will be
* used instead as the base. This rate is used to setup the timing registers
* used for NAND accesses.
*/
#define LPC32XX_DEF_BUS_RATE 133250000
/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
#define LPC32XX_DMA_TIMEOUT 100
/*
* NAND ECC Layout for small page NAND devices
* Note: For large and huge page devices, the default layouts are used
*/
static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
oobregion->length = 6;
oobregion->offset = 10;
return 0;
}
static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section > 1)
return -ERANGE;
if (!section) {
oobregion->offset = 0;
oobregion->length = 4;
} else {
oobregion->offset = 6;
oobregion->length = 4;
}
return 0;
}
static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
.ecc = lpc32xx_ooblayout_ecc,
.free = lpc32xx_ooblayout_free,
};
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
/*
* Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
* Note: Large page devices used the default layout
*/
static struct nand_bbt_descr bbt_smallpage_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 6,
.maxblocks = 4,
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 6,
.maxblocks = 4,
.pattern = mirror_pattern
};
/*
* NAND platform configuration structure
*/
struct lpc32xx_nand_cfg_slc {
uint32_t wdr_clks;
uint32_t wwidth;
uint32_t whold;
uint32_t wsetup;
uint32_t rdr_clks;
uint32_t rwidth;
uint32_t rhold;
uint32_t rsetup;
int wp_gpio;
struct mtd_partition *parts;
unsigned num_parts;
};
struct lpc32xx_nand_host {
struct nand_chip nand_chip;
struct lpc32xx_slc_platform_data *pdata;
struct clk *clk;
void __iomem *io_base;
struct lpc32xx_nand_cfg_slc *ncfg;
struct completion comp;
struct dma_chan *dma_chan;
uint32_t dma_buf_len;
struct dma_slave_config dma_slave_config;
struct scatterlist sgl;
/*
* DMA and CPU addresses of ECC work area and data buffer
*/
uint32_t *ecc_buf;
uint8_t *data_buf;
dma_addr_t io_base_dma;
};
static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
{
uint32_t clkrate, tmp;
/* Reset SLC controller */
writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
udelay(1000);
/* Basic setup */
writel(0, SLC_CFG(host->io_base));
writel(0, SLC_IEN(host->io_base));
writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
SLC_ICR(host->io_base));
/* Get base clock for SLC block */
clkrate = clk_get_rate(host->clk);
if (clkrate == 0)
clkrate = LPC32XX_DEF_BUS_RATE;
/* Compute clock setup values */
tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
SLCTAC_RDR(host->ncfg->rdr_clks) |
SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
writel(tmp, SLC_TAC(host->io_base));
}
/*
* Hardware specific access to control lines
*/
static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
uint32_t tmp;
struct nand_chip *chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
/* Does CE state need to be changed? */
tmp = readl(SLC_CFG(host->io_base));
if (ctrl & NAND_NCE)
tmp |= SLCCFG_CE_LOW;
else
tmp &= ~SLCCFG_CE_LOW;
writel(tmp, SLC_CFG(host->io_base));
if (cmd != NAND_CMD_NONE) {
if (ctrl & NAND_CLE)
writel(cmd, SLC_CMD(host->io_base));
else
writel(cmd, SLC_ADDR(host->io_base));
}
}
/*
* Read the Device Ready pin
*/
static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
int rdy = 0;
if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
rdy = 1;
return rdy;
}
/*
* Enable NAND write protect
*/
static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
{
if (gpio_is_valid(host->ncfg->wp_gpio))
gpio_set_value(host->ncfg->wp_gpio, 0);
}
/*
* Disable NAND write protect
*/
static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
{
if (gpio_is_valid(host->ncfg->wp_gpio))
gpio_set_value(host->ncfg->wp_gpio, 1);
}
/*
* Prepares SLC for transfers with H/W ECC enabled
*/
static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
{
/* Hardware ECC is enabled automatically in hardware as needed */
}
/*
* Calculates the ECC for the data
*/
static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
const unsigned char *buf,
unsigned char *code)
{
/*
* ECC is calculated automatically in hardware during syndrome read
* and write operations, so it doesn't need to be calculated here.
*/
return 0;
}
/*
* Read a single byte from NAND device
*/
static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
return (uint8_t)readl(SLC_DATA(host->io_base));
}
/*
* Simple device read without ECC
*/
static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
/* Direct device read with no ECC */
while (len-- > 0)
*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
}
/*
* Simple device write without ECC
*/
static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
/* Direct device write with no ECC */
while (len-- > 0)
writel((uint32_t)*buf++, SLC_DATA(host->io_base));
}
/*
* Read the OOB data from the device without ECC using FIFO method
*/
static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/*
* Write the OOB data to the device without ECC using FIFO method
*/
static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
int status;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
/* Send command to program the OOB data */
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/*
* Fills in the ECC fields in the OOB buffer with the hardware generated ECC
*/
static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
{
int i;
for (i = 0; i < (count * 3); i += 3) {
uint32_t ce = ecc[i / 3];
ce = ~(ce << 2) & 0xFFFFFF;
spare[i + 2] = (uint8_t)(ce & 0xFF);
ce >>= 8;
spare[i + 1] = (uint8_t)(ce & 0xFF);
ce >>= 8;
spare[i] = (uint8_t)(ce & 0xFF);
}
}
static void lpc32xx_dma_complete_func(void *completion)
{
complete(completion);
}
static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
void *mem, int len, enum dma_transfer_direction dir)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
struct dma_async_tx_descriptor *desc;
int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
int res;
host->dma_slave_config.direction = dir;
host->dma_slave_config.src_addr = dma;
host->dma_slave_config.dst_addr = dma;
host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
host->dma_slave_config.src_maxburst = 4;
host->dma_slave_config.dst_maxburst = 4;
/* DMA controller does flow control: */
host->dma_slave_config.device_fc = false;
if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
return -ENXIO;
}
sg_init_one(&host->sgl, mem, len);
res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
DMA_BIDIRECTIONAL);
if (res != 1) {
dev_err(mtd->dev.parent, "Failed to map sg list\n");
return -ENXIO;
}
desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
flags);
if (!desc) {
dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
goto out1;
}
init_completion(&host->comp);
desc->callback = lpc32xx_dma_complete_func;
desc->callback_param = &host->comp;
dmaengine_submit(desc);
dma_async_issue_pending(host->dma_chan);
wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
DMA_BIDIRECTIONAL);
return 0;
out1:
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
DMA_BIDIRECTIONAL);
return -ENXIO;
}
/*
* DMA read/write transfers with ECC support
*/
static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
int read)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
int i, status = 0;
unsigned long timeout;
int res;
enum dma_transfer_direction dir =
read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
uint8_t *dma_buf;
bool dma_mapped;
if ((void *)buf <= high_memory) {
dma_buf = buf;
dma_mapped = true;
} else {
dma_buf = host->data_buf;
dma_mapped = false;
if (!read)
memcpy(host->data_buf, buf, mtd->writesize);
}
if (read) {
writel(readl(SLC_CFG(host->io_base)) |
SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
} else {
writel((readl(SLC_CFG(host->io_base)) |
SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
~SLCCFG_DMA_DIR,
SLC_CFG(host->io_base));
}
/* Clear initial ECC */
writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
/* Transfer size is data area only */
writel(mtd->writesize, SLC_TC(host->io_base));
/* Start transfer in the NAND controller */
writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
SLC_CTRL(host->io_base));
for (i = 0; i < chip->ecc.steps; i++) {
/* Data */
res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
dma_buf + i * chip->ecc.size,
mtd->writesize / chip->ecc.steps, dir);
if (res)
return res;
/* Always _read_ ECC */
if (i == chip->ecc.steps - 1)
break;
if (!read) /* ECC availability delayed on write */
udelay(10);
res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
&host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
if (res)
return res;
}
/*
* According to NXP, the DMA can be finished here, but the NAND
* controller may still have buffered data. After porting to using the
* dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
* appears to be always true, according to tests. Keeping the check for
* safety reasons for now.
*/
if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
dev_warn(mtd->dev.parent, "FIFO not empty!\n");
timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
time_before(jiffies, timeout))
cpu_relax();
if (!time_before(jiffies, timeout)) {
dev_err(mtd->dev.parent, "FIFO held data too long\n");
status = -EIO;
}
}
/* Read last calculated ECC value */
if (!read)
udelay(10);
host->ecc_buf[chip->ecc.steps - 1] =
readl(SLC_ECC(host->io_base));
/* Flush DMA */
dmaengine_terminate_all(host->dma_chan);
if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
readl(SLC_TC(host->io_base))) {
/* Something is left in the FIFO, something is wrong */
dev_err(mtd->dev.parent, "DMA FIFO failure\n");
status = -EIO;
}
/* Stop DMA & HW ECC */
writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
SLC_CTRL(host->io_base));
writel(readl(SLC_CFG(host->io_base)) &
~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
if (!dma_mapped && read)
memcpy(buf, host->data_buf, mtd->writesize);
return status;
}
/*
* Read the data and OOB data from the device, use ECC correction with the
* data, disable ECC for the OOB data
*/
static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
struct mtd_oob_region oobregion = { };
int stat, i, status, error;
uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
/* Issue read command */
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
/* Read data and oob, calculate ECC */
status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
/* Get OOB data */
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
/* Convert to stored ECC format */
lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
/* Pointer to ECC data retrieved from NAND spare area */
error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
if (error)
return error;
oobecc = chip->oob_poi + oobregion.offset;
for (i = 0; i < chip->ecc.steps; i++) {
stat = chip->ecc.correct(mtd, buf, oobecc,
&tmpecc[i * chip->ecc.bytes]);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
buf += chip->ecc.size;
oobecc += chip->ecc.bytes;
}
return status;
}
/*
* Read the data and OOB data from the device, no ECC correction with the
* data or OOB data
*/
static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf, int oob_required,
int page)
{
/* Issue read command */
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
/* Raw reads can just use the FIFO interface */
chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/*
* Write the data and OOB data to the device, use ECC with the data,
* disable ECC for the OOB data
*/
static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf,
int oob_required, int page)
{
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
struct mtd_oob_region oobregion = { };
uint8_t *pb;
int error;
/* Write data, calculate ECC on outbound data */
error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
if (error)
return error;
/*
* The calculated ECC needs some manual work done to it before
* committing it to NAND. Process the calculated ECC and place
* the resultant values directly into the OOB buffer. */
error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
if (error)
return error;
pb = chip->oob_poi + oobregion.offset;
lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
/* Write ECC data to device */
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
/*
* Write the data and OOB data to the device, no ECC correction with the
* data or OOB data
*/
static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf,
int oob_required, int page)
{
/* Raw writes can just use the FIFO interface */
chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
{
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
dma_cap_mask_t mask;
if (!host->pdata || !host->pdata->dma_filter) {
dev_err(mtd->dev.parent, "no DMA platform data\n");
return -ENOENT;
}
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
"nand-slc");
if (!host->dma_chan) {
dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
return -EBUSY;
}
return 0;
}
static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
{
struct lpc32xx_nand_cfg_slc *ncfg;
struct device_node *np = dev->of_node;
ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
if (!ncfg)
return NULL;
of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
of_property_read_u32(np, "nxp,whold", &ncfg->whold);
of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
!ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
!ncfg->rhold || !ncfg->rsetup) {
dev_err(dev, "chip parameters not specified correctly\n");
return NULL;
}
ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
return ncfg;
}
/*
* Probe for NAND controller
*/
static int lpc32xx_nand_probe(struct platform_device *pdev)
{
struct lpc32xx_nand_host *host;
struct mtd_info *mtd;
struct nand_chip *chip;
struct resource *rc;
int res;
rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (rc == NULL) {
dev_err(&pdev->dev, "No memory resource found for device\n");
return -EBUSY;
}
/* Allocate memory for the device structure (and zero it) */
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->io_base_dma = rc->start;
host->io_base = devm_ioremap_resource(&pdev->dev, rc);
if (IS_ERR(host->io_base))
return PTR_ERR(host->io_base);
if (pdev->dev.of_node)
host->ncfg = lpc32xx_parse_dt(&pdev->dev);
if (!host->ncfg) {
dev_err(&pdev->dev,
"Missing or bad NAND config from device tree\n");
return -ENOENT;
}
if (host->ncfg->wp_gpio == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
host->ncfg->wp_gpio, "NAND WP")) {
dev_err(&pdev->dev, "GPIO not available\n");
return -EBUSY;
}
lpc32xx_wp_disable(host);
host->pdata = dev_get_platdata(&pdev->dev);
chip = &host->nand_chip;
mtd = nand_to_mtd(chip);
nand_set_controller_data(chip, host);
nand_set_flash_node(chip, pdev->dev.of_node);
mtd->owner = THIS_MODULE;
mtd->dev.parent = &pdev->dev;
/* Get NAND clock */
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
dev_err(&pdev->dev, "Clock failure\n");
res = -ENOENT;
goto err_exit1;
}
clk_prepare_enable(host->clk);
/* Set NAND IO addresses and command/ready functions */
chip->IO_ADDR_R = SLC_DATA(host->io_base);
chip->IO_ADDR_W = SLC_DATA(host->io_base);
chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
chip->dev_ready = lpc32xx_nand_device_ready;
chip->chip_delay = 20; /* 20us command delay time */
/* Init NAND controller */
lpc32xx_nand_setup(host);
platform_set_drvdata(pdev, host);
/* NAND callbacks for LPC32xx SLC hardware */
chip->ecc.mode = NAND_ECC_HW_SYNDROME;
chip->read_byte = lpc32xx_nand_read_byte;
chip->read_buf = lpc32xx_nand_read_buf;
chip->write_buf = lpc32xx_nand_write_buf;
chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
chip->ecc.correct = nand_correct_data;
chip->ecc.strength = 1;
chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
/*
* Allocate a large enough buffer for a single huge page plus
* extra space for the spare area and ECC storage area
*/
host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
GFP_KERNEL);
if (host->data_buf == NULL) {
res = -ENOMEM;
goto err_exit2;
}
res = lpc32xx_nand_dma_setup(host);
if (res) {
res = -EIO;
goto err_exit2;
}
/* Find NAND device */
if (nand_scan_ident(mtd, 1, NULL)) {
res = -ENXIO;
goto err_exit3;
}
/* OOB and ECC CPU and DMA work areas */
host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
/*
* Small page FLASH has a unique OOB layout, but large and huge
* page FLASH use the standard layout. Small page FLASH uses a
* custom BBT marker layout.
*/
if (mtd->writesize <= 512)
mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
/* These sizes remain the same regardless of page size */
chip->ecc.size = 256;
chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
chip->ecc.prepad = chip->ecc.postpad = 0;
/*
* Use a custom BBT marker setup for small page FLASH that
* won't interfere with the ECC layout. Large and huge page
* FLASH use the standard layout.
*/
if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
mtd->writesize <= 512) {
chip->bbt_td = &bbt_smallpage_main_descr;
chip->bbt_md = &bbt_smallpage_mirror_descr;
}
/*
* Fills out all the uninitialized function pointers with the defaults
*/
if (nand_scan_tail(mtd)) {
res = -ENXIO;
goto err_exit3;
}
mtd->name = "nxp_lpc3220_slc";
res = mtd_device_register(mtd, host->ncfg->parts,
host->ncfg->num_parts);
if (!res)
return res;
nand_release(mtd);
err_exit3:
dma_release_channel(host->dma_chan);
err_exit2:
clk_disable_unprepare(host->clk);
err_exit1:
lpc32xx_wp_enable(host);
return res;
}
/*
* Remove NAND device.
*/
static int lpc32xx_nand_remove(struct platform_device *pdev)
{
uint32_t tmp;
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
nand_release(mtd);
dma_release_channel(host->dma_chan);
/* Force CE high */
tmp = readl(SLC_CTRL(host->io_base));
tmp &= ~SLCCFG_CE_LOW;
writel(tmp, SLC_CTRL(host->io_base));
clk_disable_unprepare(host->clk);
lpc32xx_wp_enable(host);
return 0;
}
#ifdef CONFIG_PM
static int lpc32xx_nand_resume(struct platform_device *pdev)
{
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
/* Re-enable NAND clock */
clk_prepare_enable(host->clk);
/* Fresh init of NAND controller */
lpc32xx_nand_setup(host);
/* Disable write protect */
lpc32xx_wp_disable(host);
return 0;
}
static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
{
uint32_t tmp;
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
/* Force CE high */
tmp = readl(SLC_CTRL(host->io_base));
tmp &= ~SLCCFG_CE_LOW;
writel(tmp, SLC_CTRL(host->io_base));
/* Enable write protect for safety */
lpc32xx_wp_enable(host);
/* Disable clock */
clk_disable_unprepare(host->clk);
return 0;
}
#else
#define lpc32xx_nand_resume NULL
#define lpc32xx_nand_suspend NULL
#endif
static const struct of_device_id lpc32xx_nand_match[] = {
{ .compatible = "nxp,lpc3220-slc" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
static struct platform_driver lpc32xx_nand_driver = {
.probe = lpc32xx_nand_probe,
.remove = lpc32xx_nand_remove,
.resume = lpc32xx_nand_resume,
.suspend = lpc32xx_nand_suspend,
.driver = {
.name = LPC32XX_MODNAME,
.of_match_table = lpc32xx_nand_match,
},
};
module_platform_driver(lpc32xx_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");