huawei-mrd-kernel/drivers/mtd/nand/s3c2410.c

1165 lines
29 KiB
C

/* linux/drivers/mtd/nand/s3c2410.c
*
* Copyright © 2004-2008 Simtec Electronics
* http://armlinux.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
*
* Samsung S3C2410/S3C2440/S3C2412 NAND driver
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define pr_fmt(fmt) "nand-s3c2410: " fmt
#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
#define DEBUG
#endif
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_data/mtd-nand-s3c2410.h>
#define S3C2410_NFREG(x) (x)
#define S3C2410_NFCONF S3C2410_NFREG(0x00)
#define S3C2410_NFCMD S3C2410_NFREG(0x04)
#define S3C2410_NFADDR S3C2410_NFREG(0x08)
#define S3C2410_NFDATA S3C2410_NFREG(0x0C)
#define S3C2410_NFSTAT S3C2410_NFREG(0x10)
#define S3C2410_NFECC S3C2410_NFREG(0x14)
#define S3C2440_NFCONT S3C2410_NFREG(0x04)
#define S3C2440_NFCMD S3C2410_NFREG(0x08)
#define S3C2440_NFADDR S3C2410_NFREG(0x0C)
#define S3C2440_NFDATA S3C2410_NFREG(0x10)
#define S3C2440_NFSTAT S3C2410_NFREG(0x20)
#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
#define S3C2412_NFSTAT S3C2410_NFREG(0x28)
#define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
#define S3C2410_NFCONF_EN (1<<15)
#define S3C2410_NFCONF_INITECC (1<<12)
#define S3C2410_NFCONF_nFCE (1<<11)
#define S3C2410_NFCONF_TACLS(x) ((x)<<8)
#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
#define S3C2410_NFSTAT_BUSY (1<<0)
#define S3C2440_NFCONF_TACLS(x) ((x)<<12)
#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
#define S3C2440_NFCONT_INITECC (1<<4)
#define S3C2440_NFCONT_nFCE (1<<1)
#define S3C2440_NFCONT_ENABLE (1<<0)
#define S3C2440_NFSTAT_READY (1<<0)
#define S3C2412_NFCONF_NANDBOOT (1<<31)
#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
#define S3C2412_NFCONT_nFCE0 (1<<1)
#define S3C2412_NFSTAT_READY (1<<0)
/* new oob placement block for use with hardware ecc generation
*/
static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
oobregion->offset = 0;
oobregion->length = 3;
return 0;
}
static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
oobregion->offset = 8;
oobregion->length = 8;
return 0;
}
static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
.ecc = s3c2410_ooblayout_ecc,
.free = s3c2410_ooblayout_free,
};
/* controller and mtd information */
struct s3c2410_nand_info;
/**
* struct s3c2410_nand_mtd - driver MTD structure
* @mtd: The MTD instance to pass to the MTD layer.
* @chip: The NAND chip information.
* @set: The platform information supplied for this set of NAND chips.
* @info: Link back to the hardware information.
* @scan_res: The result from calling nand_scan_ident().
*/
struct s3c2410_nand_mtd {
struct nand_chip chip;
struct s3c2410_nand_set *set;
struct s3c2410_nand_info *info;
int scan_res;
};
enum s3c_cpu_type {
TYPE_S3C2410,
TYPE_S3C2412,
TYPE_S3C2440,
};
enum s3c_nand_clk_state {
CLOCK_DISABLE = 0,
CLOCK_ENABLE,
CLOCK_SUSPEND,
};
/* overview of the s3c2410 nand state */
/**
* struct s3c2410_nand_info - NAND controller state.
* @mtds: An array of MTD instances on this controoler.
* @platform: The platform data for this board.
* @device: The platform device we bound to.
* @clk: The clock resource for this controller.
* @regs: The area mapped for the hardware registers.
* @sel_reg: Pointer to the register controlling the NAND selection.
* @sel_bit: The bit in @sel_reg to select the NAND chip.
* @mtd_count: The number of MTDs created from this controller.
* @save_sel: The contents of @sel_reg to be saved over suspend.
* @clk_rate: The clock rate from @clk.
* @clk_state: The current clock state.
* @cpu_type: The exact type of this controller.
*/
struct s3c2410_nand_info {
/* mtd info */
struct nand_hw_control controller;
struct s3c2410_nand_mtd *mtds;
struct s3c2410_platform_nand *platform;
/* device info */
struct device *device;
struct clk *clk;
void __iomem *regs;
void __iomem *sel_reg;
int sel_bit;
int mtd_count;
unsigned long save_sel;
unsigned long clk_rate;
enum s3c_nand_clk_state clk_state;
enum s3c_cpu_type cpu_type;
#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
struct notifier_block freq_transition;
#endif
};
/* conversion functions */
static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
{
return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
chip);
}
static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
{
return s3c2410_nand_mtd_toours(mtd)->info;
}
static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
{
return platform_get_drvdata(dev);
}
static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
{
return dev_get_platdata(&dev->dev);
}
static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
{
#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
return 1;
#else
return 0;
#endif
}
/**
* s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
* @info: The controller instance.
* @new_state: State to which clock should be set.
*/
static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
enum s3c_nand_clk_state new_state)
{
if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
return;
if (info->clk_state == CLOCK_ENABLE) {
if (new_state != CLOCK_ENABLE)
clk_disable_unprepare(info->clk);
} else {
if (new_state == CLOCK_ENABLE)
clk_prepare_enable(info->clk);
}
info->clk_state = new_state;
}
/* timing calculations */
#define NS_IN_KHZ 1000000
/**
* s3c_nand_calc_rate - calculate timing data.
* @wanted: The cycle time in nanoseconds.
* @clk: The clock rate in kHz.
* @max: The maximum divider value.
*
* Calculate the timing value from the given parameters.
*/
static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
{
int result;
result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
pr_debug("result %d from %ld, %d\n", result, clk, wanted);
if (result > max) {
pr_err("%d ns is too big for current clock rate %ld\n",
wanted, clk);
return -1;
}
if (result < 1)
result = 1;
return result;
}
#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
/* controller setup */
/**
* s3c2410_nand_setrate - setup controller timing information.
* @info: The controller instance.
*
* Given the information supplied by the platform, calculate and set
* the necessary timing registers in the hardware to generate the
* necessary timing cycles to the hardware.
*/
static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
{
struct s3c2410_platform_nand *plat = info->platform;
int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
int tacls, twrph0, twrph1;
unsigned long clkrate = clk_get_rate(info->clk);
unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
unsigned long flags;
/* calculate the timing information for the controller */
info->clk_rate = clkrate;
clkrate /= 1000; /* turn clock into kHz for ease of use */
if (plat != NULL) {
tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
} else {
/* default timings */
tacls = tacls_max;
twrph0 = 8;
twrph1 = 8;
}
if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
dev_err(info->device, "cannot get suitable timings\n");
return -EINVAL;
}
dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
twrph1, to_ns(twrph1, clkrate));
switch (info->cpu_type) {
case TYPE_S3C2410:
mask = (S3C2410_NFCONF_TACLS(3) |
S3C2410_NFCONF_TWRPH0(7) |
S3C2410_NFCONF_TWRPH1(7));
set = S3C2410_NFCONF_EN;
set |= S3C2410_NFCONF_TACLS(tacls - 1);
set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
break;
case TYPE_S3C2440:
case TYPE_S3C2412:
mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
S3C2440_NFCONF_TWRPH0(7) |
S3C2440_NFCONF_TWRPH1(7));
set = S3C2440_NFCONF_TACLS(tacls - 1);
set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
break;
default:
BUG();
}
local_irq_save(flags);
cfg = readl(info->regs + S3C2410_NFCONF);
cfg &= ~mask;
cfg |= set;
writel(cfg, info->regs + S3C2410_NFCONF);
local_irq_restore(flags);
dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
return 0;
}
/**
* s3c2410_nand_inithw - basic hardware initialisation
* @info: The hardware state.
*
* Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
* to setup the hardware access speeds and set the controller to be enabled.
*/
static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
{
int ret;
ret = s3c2410_nand_setrate(info);
if (ret < 0)
return ret;
switch (info->cpu_type) {
case TYPE_S3C2410:
default:
break;
case TYPE_S3C2440:
case TYPE_S3C2412:
/* enable the controller and de-assert nFCE */
writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
}
return 0;
}
/**
* s3c2410_nand_select_chip - select the given nand chip
* @mtd: The MTD instance for this chip.
* @chip: The chip number.
*
* This is called by the MTD layer to either select a given chip for the
* @mtd instance, or to indicate that the access has finished and the
* chip can be de-selected.
*
* The routine ensures that the nFCE line is correctly setup, and any
* platform specific selection code is called to route nFCE to the specific
* chip.
*/
static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct s3c2410_nand_info *info;
struct s3c2410_nand_mtd *nmtd;
struct nand_chip *this = mtd_to_nand(mtd);
unsigned long cur;
nmtd = nand_get_controller_data(this);
info = nmtd->info;
if (chip != -1)
s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
cur = readl(info->sel_reg);
if (chip == -1) {
cur |= info->sel_bit;
} else {
if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
dev_err(info->device, "invalid chip %d\n", chip);
return;
}
if (info->platform != NULL) {
if (info->platform->select_chip != NULL)
(info->platform->select_chip) (nmtd->set, chip);
}
cur &= ~info->sel_bit;
}
writel(cur, info->sel_reg);
if (chip == -1)
s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
}
/* s3c2410_nand_hwcontrol
*
* Issue command and address cycles to the chip
*/
static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd, info->regs + S3C2410_NFCMD);
else
writeb(cmd, info->regs + S3C2410_NFADDR);
}
/* command and control functions */
static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd, info->regs + S3C2440_NFCMD);
else
writeb(cmd, info->regs + S3C2440_NFADDR);
}
/* s3c2410_nand_devready()
*
* returns 0 if the nand is busy, 1 if it is ready
*/
static int s3c2410_nand_devready(struct mtd_info *mtd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
}
static int s3c2440_nand_devready(struct mtd_info *mtd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
}
static int s3c2412_nand_devready(struct mtd_info *mtd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
}
/* ECC handling functions */
#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned int diff0, diff1, diff2;
unsigned int bit, byte;
pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
diff0 = read_ecc[0] ^ calc_ecc[0];
diff1 = read_ecc[1] ^ calc_ecc[1];
diff2 = read_ecc[2] ^ calc_ecc[2];
pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
__func__, 3, read_ecc, 3, calc_ecc,
diff0, diff1, diff2);
if (diff0 == 0 && diff1 == 0 && diff2 == 0)
return 0; /* ECC is ok */
/* sometimes people do not think about using the ECC, so check
* to see if we have an 0xff,0xff,0xff read ECC and then ignore
* the error, on the assumption that this is an un-eccd page.
*/
if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
&& info->platform->ignore_unset_ecc)
return 0;
/* Can we correct this ECC (ie, one row and column change).
* Note, this is similar to the 256 error code on smartmedia */
if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
/* calculate the bit position of the error */
bit = ((diff2 >> 3) & 1) |
((diff2 >> 4) & 2) |
((diff2 >> 5) & 4);
/* calculate the byte position of the error */
byte = ((diff2 << 7) & 0x100) |
((diff1 << 0) & 0x80) |
((diff1 << 1) & 0x40) |
((diff1 << 2) & 0x20) |
((diff1 << 3) & 0x10) |
((diff0 >> 4) & 0x08) |
((diff0 >> 3) & 0x04) |
((diff0 >> 2) & 0x02) |
((diff0 >> 1) & 0x01);
dev_dbg(info->device, "correcting error bit %d, byte %d\n",
bit, byte);
dat[byte] ^= (1 << bit);
return 1;
}
/* if there is only one bit difference in the ECC, then
* one of only a row or column parity has changed, which
* means the error is most probably in the ECC itself */
diff0 |= (diff1 << 8);
diff0 |= (diff2 << 16);
/* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
if ((diff0 & (diff0 - 1)) == 0)
return 1;
return -1;
}
/* ECC functions
*
* These allow the s3c2410 and s3c2440 to use the controller's ECC
* generator block to ECC the data as it passes through]
*/
static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ctrl;
ctrl = readl(info->regs + S3C2410_NFCONF);
ctrl |= S3C2410_NFCONF_INITECC;
writel(ctrl, info->regs + S3C2410_NFCONF);
}
static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ctrl;
ctrl = readl(info->regs + S3C2440_NFCONT);
writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
info->regs + S3C2440_NFCONT);
}
static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ctrl;
ctrl = readl(info->regs + S3C2440_NFCONT);
writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
}
static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
return 0;
}
static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
ecc_code[0] = ecc;
ecc_code[1] = ecc >> 8;
ecc_code[2] = ecc >> 16;
pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
return 0;
}
static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
ecc_code[0] = ecc;
ecc_code[1] = ecc >> 8;
ecc_code[2] = ecc >> 16;
pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
return 0;
}
#endif
/* over-ride the standard functions for a little more speed. We can
* use read/write block to move the data buffers to/from the controller
*/
static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *this = mtd_to_nand(mtd);
readsb(this->IO_ADDR_R, buf, len);
}
static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
/* cleanup if we've got less than a word to do */
if (len & 3) {
buf += len & ~3;
for (; len & 3; len--)
*buf++ = readb(info->regs + S3C2440_NFDATA);
}
}
static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
int len)
{
struct nand_chip *this = mtd_to_nand(mtd);
writesb(this->IO_ADDR_W, buf, len);
}
static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
int len)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
/* cleanup any fractional write */
if (len & 3) {
buf += len & ~3;
for (; len & 3; len--, buf++)
writeb(*buf, info->regs + S3C2440_NFDATA);
}
}
/* cpufreq driver support */
#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
unsigned long val, void *data)
{
struct s3c2410_nand_info *info;
unsigned long newclk;
info = container_of(nb, struct s3c2410_nand_info, freq_transition);
newclk = clk_get_rate(info->clk);
if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
(val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
s3c2410_nand_setrate(info);
}
return 0;
}
static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
{
info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
return cpufreq_register_notifier(&info->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
{
cpufreq_unregister_notifier(&info->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
#else
static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
{
return 0;
}
static inline void
s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
{
}
#endif
/* device management functions */
static int s3c24xx_nand_remove(struct platform_device *pdev)
{
struct s3c2410_nand_info *info = to_nand_info(pdev);
if (info == NULL)
return 0;
s3c2410_nand_cpufreq_deregister(info);
/* Release all our mtds and their partitions, then go through
* freeing the resources used
*/
if (info->mtds != NULL) {
struct s3c2410_nand_mtd *ptr = info->mtds;
int mtdno;
for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
nand_release(nand_to_mtd(&ptr->chip));
}
}
/* free the common resources */
if (!IS_ERR(info->clk))
s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
return 0;
}
static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
struct s3c2410_nand_mtd *mtd,
struct s3c2410_nand_set *set)
{
if (set) {
struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
mtdinfo->name = set->name;
return mtd_device_parse_register(mtdinfo, NULL, NULL,
set->partitions, set->nr_partitions);
}
return -ENODEV;
}
/**
* s3c2410_nand_init_chip - initialise a single instance of an chip
* @info: The base NAND controller the chip is on.
* @nmtd: The new controller MTD instance to fill in.
* @set: The information passed from the board specific platform data.
*
* Initialise the given @nmtd from the information in @info and @set. This
* readies the structure for use with the MTD layer functions by ensuring
* all pointers are setup and the necessary control routines selected.
*/
static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
struct s3c2410_nand_mtd *nmtd,
struct s3c2410_nand_set *set)
{
struct nand_chip *chip = &nmtd->chip;
void __iomem *regs = info->regs;
chip->write_buf = s3c2410_nand_write_buf;
chip->read_buf = s3c2410_nand_read_buf;
chip->select_chip = s3c2410_nand_select_chip;
chip->chip_delay = 50;
nand_set_controller_data(chip, nmtd);
chip->options = set->options;
chip->controller = &info->controller;
switch (info->cpu_type) {
case TYPE_S3C2410:
chip->IO_ADDR_W = regs + S3C2410_NFDATA;
info->sel_reg = regs + S3C2410_NFCONF;
info->sel_bit = S3C2410_NFCONF_nFCE;
chip->cmd_ctrl = s3c2410_nand_hwcontrol;
chip->dev_ready = s3c2410_nand_devready;
break;
case TYPE_S3C2440:
chip->IO_ADDR_W = regs + S3C2440_NFDATA;
info->sel_reg = regs + S3C2440_NFCONT;
info->sel_bit = S3C2440_NFCONT_nFCE;
chip->cmd_ctrl = s3c2440_nand_hwcontrol;
chip->dev_ready = s3c2440_nand_devready;
chip->read_buf = s3c2440_nand_read_buf;
chip->write_buf = s3c2440_nand_write_buf;
break;
case TYPE_S3C2412:
chip->IO_ADDR_W = regs + S3C2440_NFDATA;
info->sel_reg = regs + S3C2440_NFCONT;
info->sel_bit = S3C2412_NFCONT_nFCE0;
chip->cmd_ctrl = s3c2440_nand_hwcontrol;
chip->dev_ready = s3c2412_nand_devready;
if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
dev_info(info->device, "System booted from NAND\n");
break;
}
chip->IO_ADDR_R = chip->IO_ADDR_W;
nmtd->info = info;
nmtd->set = set;
#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
chip->ecc.correct = s3c2410_nand_correct_data;
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.strength = 1;
switch (info->cpu_type) {
case TYPE_S3C2410:
chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
break;
case TYPE_S3C2412:
chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
chip->ecc.calculate = s3c2412_nand_calculate_ecc;
break;
case TYPE_S3C2440:
chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
chip->ecc.calculate = s3c2440_nand_calculate_ecc;
break;
}
#else
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_HAMMING;
#endif
if (set->disable_ecc)
chip->ecc.mode = NAND_ECC_NONE;
switch (chip->ecc.mode) {
case NAND_ECC_NONE:
dev_info(info->device, "NAND ECC disabled\n");
break;
case NAND_ECC_SOFT:
dev_info(info->device, "NAND soft ECC\n");
break;
case NAND_ECC_HW:
dev_info(info->device, "NAND hardware ECC\n");
break;
default:
dev_info(info->device, "NAND ECC UNKNOWN\n");
break;
}
/* If you use u-boot BBT creation code, specifying this flag will
* let the kernel fish out the BBT from the NAND, and also skip the
* full NAND scan that can take 1/2s or so. Little things... */
if (set->flash_bbt) {
chip->bbt_options |= NAND_BBT_USE_FLASH;
chip->options |= NAND_SKIP_BBTSCAN;
}
}
/**
* s3c2410_nand_update_chip - post probe update
* @info: The controller instance.
* @nmtd: The driver version of the MTD instance.
*
* This routine is called after the chip probe has successfully completed
* and the relevant per-chip information updated. This call ensure that
* we update the internal state accordingly.
*
* The internal state is currently limited to the ECC state information.
*/
static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
struct s3c2410_nand_mtd *nmtd)
{
struct nand_chip *chip = &nmtd->chip;
dev_dbg(info->device, "chip %p => page shift %d\n",
chip, chip->page_shift);
if (chip->ecc.mode != NAND_ECC_HW)
return;
/* change the behaviour depending on whether we are using
* the large or small page nand device */
if (chip->page_shift > 10) {
chip->ecc.size = 256;
chip->ecc.bytes = 3;
} else {
chip->ecc.size = 512;
chip->ecc.bytes = 3;
mtd_set_ooblayout(nand_to_mtd(chip), &s3c2410_ooblayout_ops);
}
}
/* s3c24xx_nand_probe
*
* called by device layer when it finds a device matching
* one our driver can handled. This code checks to see if
* it can allocate all necessary resources then calls the
* nand layer to look for devices
*/
static int s3c24xx_nand_probe(struct platform_device *pdev)
{
struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
enum s3c_cpu_type cpu_type;
struct s3c2410_nand_info *info;
struct s3c2410_nand_mtd *nmtd;
struct s3c2410_nand_set *sets;
struct resource *res;
int err = 0;
int size;
int nr_sets;
int setno;
cpu_type = platform_get_device_id(pdev)->driver_data;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (info == NULL) {
err = -ENOMEM;
goto exit_error;
}
platform_set_drvdata(pdev, info);
nand_hw_control_init(&info->controller);
/* get the clock source and enable it */
info->clk = devm_clk_get(&pdev->dev, "nand");
if (IS_ERR(info->clk)) {
dev_err(&pdev->dev, "failed to get clock\n");
err = -ENOENT;
goto exit_error;
}
s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
/* allocate and map the resource */
/* currently we assume we have the one resource */
res = pdev->resource;
size = resource_size(res);
info->device = &pdev->dev;
info->platform = plat;
info->cpu_type = cpu_type;
info->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(info->regs)) {
err = PTR_ERR(info->regs);
goto exit_error;
}
dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
/* initialise the hardware */
err = s3c2410_nand_inithw(info);
if (err != 0)
goto exit_error;
sets = (plat != NULL) ? plat->sets : NULL;
nr_sets = (plat != NULL) ? plat->nr_sets : 1;
info->mtd_count = nr_sets;
/* allocate our information */
size = nr_sets * sizeof(*info->mtds);
info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
if (info->mtds == NULL) {
err = -ENOMEM;
goto exit_error;
}
/* initialise all possible chips */
nmtd = info->mtds;
for (setno = 0; setno < nr_sets; setno++, nmtd++) {
struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
pr_debug("initialising set %d (%p, info %p)\n",
setno, nmtd, info);
mtd->dev.parent = &pdev->dev;
s3c2410_nand_init_chip(info, nmtd, sets);
nmtd->scan_res = nand_scan_ident(mtd,
(sets) ? sets->nr_chips : 1,
NULL);
if (nmtd->scan_res == 0) {
s3c2410_nand_update_chip(info, nmtd);
nand_scan_tail(mtd);
s3c2410_nand_add_partition(info, nmtd, sets);
}
if (sets != NULL)
sets++;
}
err = s3c2410_nand_cpufreq_register(info);
if (err < 0) {
dev_err(&pdev->dev, "failed to init cpufreq support\n");
goto exit_error;
}
if (allow_clk_suspend(info)) {
dev_info(&pdev->dev, "clock idle support enabled\n");
s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
}
return 0;
exit_error:
s3c24xx_nand_remove(pdev);
if (err == 0)
err = -EINVAL;
return err;
}
/* PM Support */
#ifdef CONFIG_PM
static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
{
struct s3c2410_nand_info *info = platform_get_drvdata(dev);
if (info) {
info->save_sel = readl(info->sel_reg);
/* For the moment, we must ensure nFCE is high during
* the time we are suspended. This really should be
* handled by suspending the MTDs we are using, but
* that is currently not the case. */
writel(info->save_sel | info->sel_bit, info->sel_reg);
s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
}
return 0;
}
static int s3c24xx_nand_resume(struct platform_device *dev)
{
struct s3c2410_nand_info *info = platform_get_drvdata(dev);
unsigned long sel;
if (info) {
s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
s3c2410_nand_inithw(info);
/* Restore the state of the nFCE line. */
sel = readl(info->sel_reg);
sel &= ~info->sel_bit;
sel |= info->save_sel & info->sel_bit;
writel(sel, info->sel_reg);
s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
}
return 0;
}
#else
#define s3c24xx_nand_suspend NULL
#define s3c24xx_nand_resume NULL
#endif
/* driver device registration */
static const struct platform_device_id s3c24xx_driver_ids[] = {
{
.name = "s3c2410-nand",
.driver_data = TYPE_S3C2410,
}, {
.name = "s3c2440-nand",
.driver_data = TYPE_S3C2440,
}, {
.name = "s3c2412-nand",
.driver_data = TYPE_S3C2412,
}, {
.name = "s3c6400-nand",
.driver_data = TYPE_S3C2412, /* compatible with 2412 */
},
{ }
};
MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
static struct platform_driver s3c24xx_nand_driver = {
.probe = s3c24xx_nand_probe,
.remove = s3c24xx_nand_remove,
.suspend = s3c24xx_nand_suspend,
.resume = s3c24xx_nand_resume,
.id_table = s3c24xx_driver_ids,
.driver = {
.name = "s3c24xx-nand",
},
};
module_platform_driver(s3c24xx_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_DESCRIPTION("S3C24XX MTD NAND driver");