1080 lines
27 KiB
C
1080 lines
27 KiB
C
/*
|
|
* linux/net/sunrpc/gss_krb5_crypto.c
|
|
*
|
|
* Copyright (c) 2000-2008 The Regents of the University of Michigan.
|
|
* All rights reserved.
|
|
*
|
|
* Andy Adamson <andros@umich.edu>
|
|
* Bruce Fields <bfields@umich.edu>
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 1998 by the FundsXpress, INC.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Export of this software from the United States of America may require
|
|
* a specific license from the United States Government. It is the
|
|
* responsibility of any person or organization contemplating export to
|
|
* obtain such a license before exporting.
|
|
*
|
|
* WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
|
|
* distribute this software and its documentation for any purpose and
|
|
* without fee is hereby granted, provided that the above copyright
|
|
* notice appear in all copies and that both that copyright notice and
|
|
* this permission notice appear in supporting documentation, and that
|
|
* the name of FundsXpress. not be used in advertising or publicity pertaining
|
|
* to distribution of the software without specific, written prior
|
|
* permission. FundsXpress makes no representations about the suitability of
|
|
* this software for any purpose. It is provided "as is" without express
|
|
* or implied warranty.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
*/
|
|
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/skcipher.h>
|
|
#include <linux/err.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sunrpc/gss_krb5.h>
|
|
#include <linux/sunrpc/xdr.h>
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
# define RPCDBG_FACILITY RPCDBG_AUTH
|
|
#endif
|
|
|
|
u32
|
|
krb5_encrypt(
|
|
struct crypto_skcipher *tfm,
|
|
void * iv,
|
|
void * in,
|
|
void * out,
|
|
int length)
|
|
{
|
|
u32 ret = -EINVAL;
|
|
struct scatterlist sg[1];
|
|
u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
|
|
SKCIPHER_REQUEST_ON_STACK(req, tfm);
|
|
|
|
if (length % crypto_skcipher_blocksize(tfm) != 0)
|
|
goto out;
|
|
|
|
if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
|
|
dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
|
|
crypto_skcipher_ivsize(tfm));
|
|
goto out;
|
|
}
|
|
|
|
if (iv)
|
|
memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
|
|
|
|
memcpy(out, in, length);
|
|
sg_init_one(sg, out, length);
|
|
|
|
skcipher_request_set_tfm(req, tfm);
|
|
skcipher_request_set_callback(req, 0, NULL, NULL);
|
|
skcipher_request_set_crypt(req, sg, sg, length, local_iv);
|
|
|
|
ret = crypto_skcipher_encrypt(req);
|
|
skcipher_request_zero(req);
|
|
out:
|
|
dprintk("RPC: krb5_encrypt returns %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
u32
|
|
krb5_decrypt(
|
|
struct crypto_skcipher *tfm,
|
|
void * iv,
|
|
void * in,
|
|
void * out,
|
|
int length)
|
|
{
|
|
u32 ret = -EINVAL;
|
|
struct scatterlist sg[1];
|
|
u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
|
|
SKCIPHER_REQUEST_ON_STACK(req, tfm);
|
|
|
|
if (length % crypto_skcipher_blocksize(tfm) != 0)
|
|
goto out;
|
|
|
|
if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
|
|
dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
|
|
crypto_skcipher_ivsize(tfm));
|
|
goto out;
|
|
}
|
|
if (iv)
|
|
memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
|
|
|
|
memcpy(out, in, length);
|
|
sg_init_one(sg, out, length);
|
|
|
|
skcipher_request_set_tfm(req, tfm);
|
|
skcipher_request_set_callback(req, 0, NULL, NULL);
|
|
skcipher_request_set_crypt(req, sg, sg, length, local_iv);
|
|
|
|
ret = crypto_skcipher_decrypt(req);
|
|
skcipher_request_zero(req);
|
|
out:
|
|
dprintk("RPC: gss_k5decrypt returns %d\n",ret);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
checksummer(struct scatterlist *sg, void *data)
|
|
{
|
|
struct ahash_request *req = data;
|
|
|
|
ahash_request_set_crypt(req, sg, NULL, sg->length);
|
|
|
|
return crypto_ahash_update(req);
|
|
}
|
|
|
|
static int
|
|
arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
|
|
{
|
|
unsigned int ms_usage;
|
|
|
|
switch (usage) {
|
|
case KG_USAGE_SIGN:
|
|
ms_usage = 15;
|
|
break;
|
|
case KG_USAGE_SEAL:
|
|
ms_usage = 13;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
salt[0] = (ms_usage >> 0) & 0xff;
|
|
salt[1] = (ms_usage >> 8) & 0xff;
|
|
salt[2] = (ms_usage >> 16) & 0xff;
|
|
salt[3] = (ms_usage >> 24) & 0xff;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
|
|
struct xdr_buf *body, int body_offset, u8 *cksumkey,
|
|
unsigned int usage, struct xdr_netobj *cksumout)
|
|
{
|
|
struct scatterlist sg[1];
|
|
int err = -1;
|
|
u8 *checksumdata;
|
|
u8 rc4salt[4];
|
|
struct crypto_ahash *md5;
|
|
struct crypto_ahash *hmac_md5;
|
|
struct ahash_request *req;
|
|
|
|
if (cksumkey == NULL)
|
|
return GSS_S_FAILURE;
|
|
|
|
if (cksumout->len < kctx->gk5e->cksumlength) {
|
|
dprintk("%s: checksum buffer length, %u, too small for %s\n",
|
|
__func__, cksumout->len, kctx->gk5e->name);
|
|
return GSS_S_FAILURE;
|
|
}
|
|
|
|
if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
|
|
dprintk("%s: invalid usage value %u\n", __func__, usage);
|
|
return GSS_S_FAILURE;
|
|
}
|
|
|
|
checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
|
|
if (!checksumdata)
|
|
return GSS_S_FAILURE;
|
|
|
|
md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(md5))
|
|
goto out_free_cksum;
|
|
|
|
hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
|
|
CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(hmac_md5))
|
|
goto out_free_md5;
|
|
|
|
req = ahash_request_alloc(md5, GFP_KERNEL);
|
|
if (!req)
|
|
goto out_free_hmac_md5;
|
|
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
|
|
|
|
err = crypto_ahash_init(req);
|
|
if (err)
|
|
goto out;
|
|
sg_init_one(sg, rc4salt, 4);
|
|
ahash_request_set_crypt(req, sg, NULL, 4);
|
|
err = crypto_ahash_update(req);
|
|
if (err)
|
|
goto out;
|
|
|
|
sg_init_one(sg, header, hdrlen);
|
|
ahash_request_set_crypt(req, sg, NULL, hdrlen);
|
|
err = crypto_ahash_update(req);
|
|
if (err)
|
|
goto out;
|
|
err = xdr_process_buf(body, body_offset, body->len - body_offset,
|
|
checksummer, req);
|
|
if (err)
|
|
goto out;
|
|
ahash_request_set_crypt(req, NULL, checksumdata, 0);
|
|
err = crypto_ahash_final(req);
|
|
if (err)
|
|
goto out;
|
|
|
|
ahash_request_free(req);
|
|
req = ahash_request_alloc(hmac_md5, GFP_KERNEL);
|
|
if (!req)
|
|
goto out_free_hmac_md5;
|
|
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
|
|
|
|
err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
|
|
if (err)
|
|
goto out;
|
|
|
|
sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
|
|
ahash_request_set_crypt(req, sg, checksumdata,
|
|
crypto_ahash_digestsize(md5));
|
|
err = crypto_ahash_digest(req);
|
|
if (err)
|
|
goto out;
|
|
|
|
memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
|
|
cksumout->len = kctx->gk5e->cksumlength;
|
|
out:
|
|
ahash_request_free(req);
|
|
out_free_hmac_md5:
|
|
crypto_free_ahash(hmac_md5);
|
|
out_free_md5:
|
|
crypto_free_ahash(md5);
|
|
out_free_cksum:
|
|
kfree(checksumdata);
|
|
return err ? GSS_S_FAILURE : 0;
|
|
}
|
|
|
|
/*
|
|
* checksum the plaintext data and hdrlen bytes of the token header
|
|
* The checksum is performed over the first 8 bytes of the
|
|
* gss token header and then over the data body
|
|
*/
|
|
u32
|
|
make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
|
|
struct xdr_buf *body, int body_offset, u8 *cksumkey,
|
|
unsigned int usage, struct xdr_netobj *cksumout)
|
|
{
|
|
struct crypto_ahash *tfm;
|
|
struct ahash_request *req;
|
|
struct scatterlist sg[1];
|
|
int err = -1;
|
|
u8 *checksumdata;
|
|
unsigned int checksumlen;
|
|
|
|
if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
|
|
return make_checksum_hmac_md5(kctx, header, hdrlen,
|
|
body, body_offset,
|
|
cksumkey, usage, cksumout);
|
|
|
|
if (cksumout->len < kctx->gk5e->cksumlength) {
|
|
dprintk("%s: checksum buffer length, %u, too small for %s\n",
|
|
__func__, cksumout->len, kctx->gk5e->name);
|
|
return GSS_S_FAILURE;
|
|
}
|
|
|
|
checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
|
|
if (checksumdata == NULL)
|
|
return GSS_S_FAILURE;
|
|
|
|
tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(tfm))
|
|
goto out_free_cksum;
|
|
|
|
req = ahash_request_alloc(tfm, GFP_KERNEL);
|
|
if (!req)
|
|
goto out_free_ahash;
|
|
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
|
|
|
|
checksumlen = crypto_ahash_digestsize(tfm);
|
|
|
|
if (cksumkey != NULL) {
|
|
err = crypto_ahash_setkey(tfm, cksumkey,
|
|
kctx->gk5e->keylength);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
err = crypto_ahash_init(req);
|
|
if (err)
|
|
goto out;
|
|
sg_init_one(sg, header, hdrlen);
|
|
ahash_request_set_crypt(req, sg, NULL, hdrlen);
|
|
err = crypto_ahash_update(req);
|
|
if (err)
|
|
goto out;
|
|
err = xdr_process_buf(body, body_offset, body->len - body_offset,
|
|
checksummer, req);
|
|
if (err)
|
|
goto out;
|
|
ahash_request_set_crypt(req, NULL, checksumdata, 0);
|
|
err = crypto_ahash_final(req);
|
|
if (err)
|
|
goto out;
|
|
|
|
switch (kctx->gk5e->ctype) {
|
|
case CKSUMTYPE_RSA_MD5:
|
|
err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
|
|
checksumdata, checksumlen);
|
|
if (err)
|
|
goto out;
|
|
memcpy(cksumout->data,
|
|
checksumdata + checksumlen - kctx->gk5e->cksumlength,
|
|
kctx->gk5e->cksumlength);
|
|
break;
|
|
case CKSUMTYPE_HMAC_SHA1_DES3:
|
|
memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
cksumout->len = kctx->gk5e->cksumlength;
|
|
out:
|
|
ahash_request_free(req);
|
|
out_free_ahash:
|
|
crypto_free_ahash(tfm);
|
|
out_free_cksum:
|
|
kfree(checksumdata);
|
|
return err ? GSS_S_FAILURE : 0;
|
|
}
|
|
|
|
/*
|
|
* checksum the plaintext data and hdrlen bytes of the token header
|
|
* Per rfc4121, sec. 4.2.4, the checksum is performed over the data
|
|
* body then over the first 16 octets of the MIC token
|
|
* Inclusion of the header data in the calculation of the
|
|
* checksum is optional.
|
|
*/
|
|
u32
|
|
make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
|
|
struct xdr_buf *body, int body_offset, u8 *cksumkey,
|
|
unsigned int usage, struct xdr_netobj *cksumout)
|
|
{
|
|
struct crypto_ahash *tfm;
|
|
struct ahash_request *req;
|
|
struct scatterlist sg[1];
|
|
int err = -1;
|
|
u8 *checksumdata;
|
|
unsigned int checksumlen;
|
|
|
|
if (kctx->gk5e->keyed_cksum == 0) {
|
|
dprintk("%s: expected keyed hash for %s\n",
|
|
__func__, kctx->gk5e->name);
|
|
return GSS_S_FAILURE;
|
|
}
|
|
if (cksumkey == NULL) {
|
|
dprintk("%s: no key supplied for %s\n",
|
|
__func__, kctx->gk5e->name);
|
|
return GSS_S_FAILURE;
|
|
}
|
|
|
|
checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
|
|
if (!checksumdata)
|
|
return GSS_S_FAILURE;
|
|
|
|
tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(tfm))
|
|
goto out_free_cksum;
|
|
checksumlen = crypto_ahash_digestsize(tfm);
|
|
|
|
req = ahash_request_alloc(tfm, GFP_KERNEL);
|
|
if (!req)
|
|
goto out_free_ahash;
|
|
|
|
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
|
|
|
|
err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = crypto_ahash_init(req);
|
|
if (err)
|
|
goto out;
|
|
err = xdr_process_buf(body, body_offset, body->len - body_offset,
|
|
checksummer, req);
|
|
if (err)
|
|
goto out;
|
|
if (header != NULL) {
|
|
sg_init_one(sg, header, hdrlen);
|
|
ahash_request_set_crypt(req, sg, NULL, hdrlen);
|
|
err = crypto_ahash_update(req);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
ahash_request_set_crypt(req, NULL, checksumdata, 0);
|
|
err = crypto_ahash_final(req);
|
|
if (err)
|
|
goto out;
|
|
|
|
cksumout->len = kctx->gk5e->cksumlength;
|
|
|
|
switch (kctx->gk5e->ctype) {
|
|
case CKSUMTYPE_HMAC_SHA1_96_AES128:
|
|
case CKSUMTYPE_HMAC_SHA1_96_AES256:
|
|
/* note that this truncates the hash */
|
|
memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
out:
|
|
ahash_request_free(req);
|
|
out_free_ahash:
|
|
crypto_free_ahash(tfm);
|
|
out_free_cksum:
|
|
kfree(checksumdata);
|
|
return err ? GSS_S_FAILURE : 0;
|
|
}
|
|
|
|
struct encryptor_desc {
|
|
u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
|
|
struct skcipher_request *req;
|
|
int pos;
|
|
struct xdr_buf *outbuf;
|
|
struct page **pages;
|
|
struct scatterlist infrags[4];
|
|
struct scatterlist outfrags[4];
|
|
int fragno;
|
|
int fraglen;
|
|
};
|
|
|
|
static int
|
|
encryptor(struct scatterlist *sg, void *data)
|
|
{
|
|
struct encryptor_desc *desc = data;
|
|
struct xdr_buf *outbuf = desc->outbuf;
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
|
|
struct page *in_page;
|
|
int thislen = desc->fraglen + sg->length;
|
|
int fraglen, ret;
|
|
int page_pos;
|
|
|
|
/* Worst case is 4 fragments: head, end of page 1, start
|
|
* of page 2, tail. Anything more is a bug. */
|
|
BUG_ON(desc->fragno > 3);
|
|
|
|
page_pos = desc->pos - outbuf->head[0].iov_len;
|
|
if (page_pos >= 0 && page_pos < outbuf->page_len) {
|
|
/* pages are not in place: */
|
|
int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
|
|
in_page = desc->pages[i];
|
|
} else {
|
|
in_page = sg_page(sg);
|
|
}
|
|
sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
|
|
sg->offset);
|
|
sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
|
|
sg->offset);
|
|
desc->fragno++;
|
|
desc->fraglen += sg->length;
|
|
desc->pos += sg->length;
|
|
|
|
fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
|
|
thislen -= fraglen;
|
|
|
|
if (thislen == 0)
|
|
return 0;
|
|
|
|
sg_mark_end(&desc->infrags[desc->fragno - 1]);
|
|
sg_mark_end(&desc->outfrags[desc->fragno - 1]);
|
|
|
|
skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
|
|
thislen, desc->iv);
|
|
|
|
ret = crypto_skcipher_encrypt(desc->req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sg_init_table(desc->infrags, 4);
|
|
sg_init_table(desc->outfrags, 4);
|
|
|
|
if (fraglen) {
|
|
sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
|
|
sg->offset + sg->length - fraglen);
|
|
desc->infrags[0] = desc->outfrags[0];
|
|
sg_assign_page(&desc->infrags[0], in_page);
|
|
desc->fragno = 1;
|
|
desc->fraglen = fraglen;
|
|
} else {
|
|
desc->fragno = 0;
|
|
desc->fraglen = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
|
|
int offset, struct page **pages)
|
|
{
|
|
int ret;
|
|
struct encryptor_desc desc;
|
|
SKCIPHER_REQUEST_ON_STACK(req, tfm);
|
|
|
|
BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
|
|
|
|
skcipher_request_set_tfm(req, tfm);
|
|
skcipher_request_set_callback(req, 0, NULL, NULL);
|
|
|
|
memset(desc.iv, 0, sizeof(desc.iv));
|
|
desc.req = req;
|
|
desc.pos = offset;
|
|
desc.outbuf = buf;
|
|
desc.pages = pages;
|
|
desc.fragno = 0;
|
|
desc.fraglen = 0;
|
|
|
|
sg_init_table(desc.infrags, 4);
|
|
sg_init_table(desc.outfrags, 4);
|
|
|
|
ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
|
|
skcipher_request_zero(req);
|
|
return ret;
|
|
}
|
|
|
|
struct decryptor_desc {
|
|
u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
|
|
struct skcipher_request *req;
|
|
struct scatterlist frags[4];
|
|
int fragno;
|
|
int fraglen;
|
|
};
|
|
|
|
static int
|
|
decryptor(struct scatterlist *sg, void *data)
|
|
{
|
|
struct decryptor_desc *desc = data;
|
|
int thislen = desc->fraglen + sg->length;
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
|
|
int fraglen, ret;
|
|
|
|
/* Worst case is 4 fragments: head, end of page 1, start
|
|
* of page 2, tail. Anything more is a bug. */
|
|
BUG_ON(desc->fragno > 3);
|
|
sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
|
|
sg->offset);
|
|
desc->fragno++;
|
|
desc->fraglen += sg->length;
|
|
|
|
fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
|
|
thislen -= fraglen;
|
|
|
|
if (thislen == 0)
|
|
return 0;
|
|
|
|
sg_mark_end(&desc->frags[desc->fragno - 1]);
|
|
|
|
skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
|
|
thislen, desc->iv);
|
|
|
|
ret = crypto_skcipher_decrypt(desc->req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sg_init_table(desc->frags, 4);
|
|
|
|
if (fraglen) {
|
|
sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
|
|
sg->offset + sg->length - fraglen);
|
|
desc->fragno = 1;
|
|
desc->fraglen = fraglen;
|
|
} else {
|
|
desc->fragno = 0;
|
|
desc->fraglen = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
|
|
int offset)
|
|
{
|
|
int ret;
|
|
struct decryptor_desc desc;
|
|
SKCIPHER_REQUEST_ON_STACK(req, tfm);
|
|
|
|
/* XXXJBF: */
|
|
BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
|
|
|
|
skcipher_request_set_tfm(req, tfm);
|
|
skcipher_request_set_callback(req, 0, NULL, NULL);
|
|
|
|
memset(desc.iv, 0, sizeof(desc.iv));
|
|
desc.req = req;
|
|
desc.fragno = 0;
|
|
desc.fraglen = 0;
|
|
|
|
sg_init_table(desc.frags, 4);
|
|
|
|
ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
|
|
skcipher_request_zero(req);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function makes the assumption that it was ultimately called
|
|
* from gss_wrap().
|
|
*
|
|
* The client auth_gss code moves any existing tail data into a
|
|
* separate page before calling gss_wrap.
|
|
* The server svcauth_gss code ensures that both the head and the
|
|
* tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
|
|
*
|
|
* Even with that guarantee, this function may be called more than
|
|
* once in the processing of gss_wrap(). The best we can do is
|
|
* verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
|
|
* largest expected shift will fit within RPC_MAX_AUTH_SIZE.
|
|
* At run-time we can verify that a single invocation of this
|
|
* function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
|
|
*/
|
|
|
|
int
|
|
xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
|
|
{
|
|
u8 *p;
|
|
|
|
if (shiftlen == 0)
|
|
return 0;
|
|
|
|
BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
|
|
BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
|
|
|
|
p = buf->head[0].iov_base + base;
|
|
|
|
memmove(p + shiftlen, p, buf->head[0].iov_len - base);
|
|
|
|
buf->head[0].iov_len += shiftlen;
|
|
buf->len += shiftlen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
|
|
u32 offset, u8 *iv, struct page **pages, int encrypt)
|
|
{
|
|
u32 ret;
|
|
struct scatterlist sg[1];
|
|
SKCIPHER_REQUEST_ON_STACK(req, cipher);
|
|
u8 *data;
|
|
struct page **save_pages;
|
|
u32 len = buf->len - offset;
|
|
|
|
if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
|
|
WARN_ON(0);
|
|
return -ENOMEM;
|
|
}
|
|
data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* For encryption, we want to read from the cleartext
|
|
* page cache pages, and write the encrypted data to
|
|
* the supplied xdr_buf pages.
|
|
*/
|
|
save_pages = buf->pages;
|
|
if (encrypt)
|
|
buf->pages = pages;
|
|
|
|
ret = read_bytes_from_xdr_buf(buf, offset, data, len);
|
|
buf->pages = save_pages;
|
|
if (ret)
|
|
goto out;
|
|
|
|
sg_init_one(sg, data, len);
|
|
|
|
skcipher_request_set_tfm(req, cipher);
|
|
skcipher_request_set_callback(req, 0, NULL, NULL);
|
|
skcipher_request_set_crypt(req, sg, sg, len, iv);
|
|
|
|
if (encrypt)
|
|
ret = crypto_skcipher_encrypt(req);
|
|
else
|
|
ret = crypto_skcipher_decrypt(req);
|
|
|
|
skcipher_request_zero(req);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = write_bytes_to_xdr_buf(buf, offset, data, len);
|
|
|
|
out:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
|
|
u32
|
|
gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
|
|
struct xdr_buf *buf, struct page **pages)
|
|
{
|
|
u32 err;
|
|
struct xdr_netobj hmac;
|
|
u8 *cksumkey;
|
|
u8 *ecptr;
|
|
struct crypto_skcipher *cipher, *aux_cipher;
|
|
int blocksize;
|
|
struct page **save_pages;
|
|
int nblocks, nbytes;
|
|
struct encryptor_desc desc;
|
|
u32 cbcbytes;
|
|
unsigned int usage;
|
|
|
|
if (kctx->initiate) {
|
|
cipher = kctx->initiator_enc;
|
|
aux_cipher = kctx->initiator_enc_aux;
|
|
cksumkey = kctx->initiator_integ;
|
|
usage = KG_USAGE_INITIATOR_SEAL;
|
|
} else {
|
|
cipher = kctx->acceptor_enc;
|
|
aux_cipher = kctx->acceptor_enc_aux;
|
|
cksumkey = kctx->acceptor_integ;
|
|
usage = KG_USAGE_ACCEPTOR_SEAL;
|
|
}
|
|
blocksize = crypto_skcipher_blocksize(cipher);
|
|
|
|
/* hide the gss token header and insert the confounder */
|
|
offset += GSS_KRB5_TOK_HDR_LEN;
|
|
if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
|
|
return GSS_S_FAILURE;
|
|
gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
|
|
offset -= GSS_KRB5_TOK_HDR_LEN;
|
|
|
|
if (buf->tail[0].iov_base != NULL) {
|
|
ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
|
|
} else {
|
|
buf->tail[0].iov_base = buf->head[0].iov_base
|
|
+ buf->head[0].iov_len;
|
|
buf->tail[0].iov_len = 0;
|
|
ecptr = buf->tail[0].iov_base;
|
|
}
|
|
|
|
/* copy plaintext gss token header after filler (if any) */
|
|
memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
|
|
buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
|
|
buf->len += GSS_KRB5_TOK_HDR_LEN;
|
|
|
|
/* Do the HMAC */
|
|
hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
|
|
hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
|
|
|
|
/*
|
|
* When we are called, pages points to the real page cache
|
|
* data -- which we can't go and encrypt! buf->pages points
|
|
* to scratch pages which we are going to send off to the
|
|
* client/server. Swap in the plaintext pages to calculate
|
|
* the hmac.
|
|
*/
|
|
save_pages = buf->pages;
|
|
buf->pages = pages;
|
|
|
|
err = make_checksum_v2(kctx, NULL, 0, buf,
|
|
offset + GSS_KRB5_TOK_HDR_LEN,
|
|
cksumkey, usage, &hmac);
|
|
buf->pages = save_pages;
|
|
if (err)
|
|
return GSS_S_FAILURE;
|
|
|
|
nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
|
|
nblocks = (nbytes + blocksize - 1) / blocksize;
|
|
cbcbytes = 0;
|
|
if (nblocks > 2)
|
|
cbcbytes = (nblocks - 2) * blocksize;
|
|
|
|
memset(desc.iv, 0, sizeof(desc.iv));
|
|
|
|
if (cbcbytes) {
|
|
SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
|
|
|
|
desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
|
|
desc.fragno = 0;
|
|
desc.fraglen = 0;
|
|
desc.pages = pages;
|
|
desc.outbuf = buf;
|
|
desc.req = req;
|
|
|
|
skcipher_request_set_tfm(req, aux_cipher);
|
|
skcipher_request_set_callback(req, 0, NULL, NULL);
|
|
|
|
sg_init_table(desc.infrags, 4);
|
|
sg_init_table(desc.outfrags, 4);
|
|
|
|
err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
|
|
cbcbytes, encryptor, &desc);
|
|
skcipher_request_zero(req);
|
|
if (err)
|
|
goto out_err;
|
|
}
|
|
|
|
/* Make sure IV carries forward from any CBC results. */
|
|
err = gss_krb5_cts_crypt(cipher, buf,
|
|
offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
|
|
desc.iv, pages, 1);
|
|
if (err) {
|
|
err = GSS_S_FAILURE;
|
|
goto out_err;
|
|
}
|
|
|
|
/* Now update buf to account for HMAC */
|
|
buf->tail[0].iov_len += kctx->gk5e->cksumlength;
|
|
buf->len += kctx->gk5e->cksumlength;
|
|
|
|
out_err:
|
|
if (err)
|
|
err = GSS_S_FAILURE;
|
|
return err;
|
|
}
|
|
|
|
u32
|
|
gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
|
|
u32 *headskip, u32 *tailskip)
|
|
{
|
|
struct xdr_buf subbuf;
|
|
u32 ret = 0;
|
|
u8 *cksum_key;
|
|
struct crypto_skcipher *cipher, *aux_cipher;
|
|
struct xdr_netobj our_hmac_obj;
|
|
u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
|
|
u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
|
|
int nblocks, blocksize, cbcbytes;
|
|
struct decryptor_desc desc;
|
|
unsigned int usage;
|
|
|
|
if (kctx->initiate) {
|
|
cipher = kctx->acceptor_enc;
|
|
aux_cipher = kctx->acceptor_enc_aux;
|
|
cksum_key = kctx->acceptor_integ;
|
|
usage = KG_USAGE_ACCEPTOR_SEAL;
|
|
} else {
|
|
cipher = kctx->initiator_enc;
|
|
aux_cipher = kctx->initiator_enc_aux;
|
|
cksum_key = kctx->initiator_integ;
|
|
usage = KG_USAGE_INITIATOR_SEAL;
|
|
}
|
|
blocksize = crypto_skcipher_blocksize(cipher);
|
|
|
|
|
|
/* create a segment skipping the header and leaving out the checksum */
|
|
xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
|
|
(buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
|
|
kctx->gk5e->cksumlength));
|
|
|
|
nblocks = (subbuf.len + blocksize - 1) / blocksize;
|
|
|
|
cbcbytes = 0;
|
|
if (nblocks > 2)
|
|
cbcbytes = (nblocks - 2) * blocksize;
|
|
|
|
memset(desc.iv, 0, sizeof(desc.iv));
|
|
|
|
if (cbcbytes) {
|
|
SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
|
|
|
|
desc.fragno = 0;
|
|
desc.fraglen = 0;
|
|
desc.req = req;
|
|
|
|
skcipher_request_set_tfm(req, aux_cipher);
|
|
skcipher_request_set_callback(req, 0, NULL, NULL);
|
|
|
|
sg_init_table(desc.frags, 4);
|
|
|
|
ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
|
|
skcipher_request_zero(req);
|
|
if (ret)
|
|
goto out_err;
|
|
}
|
|
|
|
/* Make sure IV carries forward from any CBC results. */
|
|
ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
|
|
/* Calculate our hmac over the plaintext data */
|
|
our_hmac_obj.len = sizeof(our_hmac);
|
|
our_hmac_obj.data = our_hmac;
|
|
|
|
ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
|
|
cksum_key, usage, &our_hmac_obj);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
/* Get the packet's hmac value */
|
|
ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
|
|
pkt_hmac, kctx->gk5e->cksumlength);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
|
|
ret = GSS_S_BAD_SIG;
|
|
goto out_err;
|
|
}
|
|
*headskip = kctx->gk5e->conflen;
|
|
*tailskip = kctx->gk5e->cksumlength;
|
|
out_err:
|
|
if (ret && ret != GSS_S_BAD_SIG)
|
|
ret = GSS_S_FAILURE;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Compute Kseq given the initial session key and the checksum.
|
|
* Set the key of the given cipher.
|
|
*/
|
|
int
|
|
krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
|
|
unsigned char *cksum)
|
|
{
|
|
struct crypto_shash *hmac;
|
|
struct shash_desc *desc;
|
|
u8 Kseq[GSS_KRB5_MAX_KEYLEN];
|
|
u32 zeroconstant = 0;
|
|
int err;
|
|
|
|
dprintk("%s: entered\n", __func__);
|
|
|
|
hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
|
|
if (IS_ERR(hmac)) {
|
|
dprintk("%s: error %ld, allocating hash '%s'\n",
|
|
__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
|
|
return PTR_ERR(hmac);
|
|
}
|
|
|
|
desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
|
|
GFP_KERNEL);
|
|
if (!desc) {
|
|
dprintk("%s: failed to allocate shash descriptor for '%s'\n",
|
|
__func__, kctx->gk5e->cksum_name);
|
|
crypto_free_shash(hmac);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
desc->tfm = hmac;
|
|
desc->flags = 0;
|
|
|
|
/* Compute intermediate Kseq from session key */
|
|
err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
/* Compute final Kseq from the checksum and intermediate Kseq */
|
|
err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
err = crypto_shash_digest(desc, cksum, 8, Kseq);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
err = 0;
|
|
|
|
out_err:
|
|
kzfree(desc);
|
|
crypto_free_shash(hmac);
|
|
dprintk("%s: returning %d\n", __func__, err);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Compute Kcrypt given the initial session key and the plaintext seqnum.
|
|
* Set the key of cipher kctx->enc.
|
|
*/
|
|
int
|
|
krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
|
|
s32 seqnum)
|
|
{
|
|
struct crypto_shash *hmac;
|
|
struct shash_desc *desc;
|
|
u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
|
|
u8 zeroconstant[4] = {0};
|
|
u8 seqnumarray[4];
|
|
int err, i;
|
|
|
|
dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
|
|
|
|
hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
|
|
if (IS_ERR(hmac)) {
|
|
dprintk("%s: error %ld, allocating hash '%s'\n",
|
|
__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
|
|
return PTR_ERR(hmac);
|
|
}
|
|
|
|
desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
|
|
GFP_KERNEL);
|
|
if (!desc) {
|
|
dprintk("%s: failed to allocate shash descriptor for '%s'\n",
|
|
__func__, kctx->gk5e->cksum_name);
|
|
crypto_free_shash(hmac);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
desc->tfm = hmac;
|
|
desc->flags = 0;
|
|
|
|
/* Compute intermediate Kcrypt from session key */
|
|
for (i = 0; i < kctx->gk5e->keylength; i++)
|
|
Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
|
|
|
|
err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
|
|
err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
|
|
seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
|
|
seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
|
|
seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
|
|
|
|
err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
err = 0;
|
|
|
|
out_err:
|
|
kzfree(desc);
|
|
crypto_free_shash(hmac);
|
|
dprintk("%s: returning %d\n", __func__, err);
|
|
return err;
|
|
}
|
|
|