mirror of
https://github.com/master-of-zen/Av1an.git
synced 2024-11-24 18:18:06 +00:00
Cross-platform command-line AV1 / VP9 / HEVC / H264 encoding framework with per scene quality encoding
aomencav1av1-encodersdockerdocker-containerencoderffmpeghevcpythonqualityrav1erustscenessvt-av1target-qualityvideovp9x265
.github/workflows | ||
Av1an | ||
.codeclimate.yml | ||
.gitignore | ||
appveyor.yml | ||
av1an.py | ||
LICENSE.md | ||
README.md | ||
requirements.txt | ||
setup.py |
Av1an
A cross-platform framework to streamline encoding
Easy, Fast, Efficient and Feature Rich
An easy way to start using VVC / AV1 / X265 / VP9 / VP8 encoding. AOM, rav1e, SVT-AV1, VPX, x265, VTM are supported.
Example with default parameters:
av1an -i input
With your own parameters:
av1an -i input -enc aom -v " --cpu-used=3 --end-usage=q --cq-level=30 --threads=8 " -w 10
--split_method aom_keyframes --vmaf_target 95 --vmaf_path "vmaf_v0.6.1.pkl" -min_q 20 -max_q 60
-ff " -vf scale=-1:720 " -a " -c:a libopus -b:a 24k " -s scenes.csv -log my_log -o output
Usage
-i --file_path Input file(s) (relative or absolute path). Will be processed with same
settings.
-o --output_file Name/Path for output file (Default: (input file name)_av1.mkv)
Output file ending is always `.mkv`
-enc --encoder Encoder to use (`aom`,`rav1e`,`svt_av1`,`vpx`,`x265`,`vvc`. Default: aom)
Example: -enc rav1e
-v --video_params Encoder settings flags (If not set, will be used default parameters.
Required for SVT-AV1s)
Must be inside ' ' or " "
-p --passes Set number of passes for encoding
(Default: AOMENC: 2, rav1e: 1, SVT-AV1: 1, VPX: 2, x265: 1, x264: 1)
At current moment 2nd pass rav1e not working
-w --workers Override number of workers.
--resume If encode was stopped/quit resumes encode with saving all progress
Resuming automatically skips scenedetection, audio encoding/copy,
spliting, so resuming only possible after actuall encoding is started.
/.temp folder must be presented for resume.
--no_check Skip checking numbers of frames for source and encoded chunks.
Needed if framerate changes to avoid console spam.
By default any differences in frames of encoded files will be reported.
--keep Not deleting temprally folders after encode finished.
-log --logging Path to .log file(By default created in temp folder)
--temp Set path for temporally folders. Default: .temp
-cfg Save/Read config file with encoder, encoder parameters,
FFmpeg and audio settings.
FFmpeg options
-a --audio_params FFmpeg audio settings flags (Default: copy audio from source to output)
Example: -a '-c:a libopus -b:a 64k'
-ff --ffmpeg FFmpeg options. Applied to each segment individually.
Example:
--ff " -r 24 -vf scale=320:240 "
-fmt --pix_format Setting custom pixel/bit format for piping
(Default: 'yuv420p')
Example for 10 bit source: 'yuv420p10le'
Encoding options should be adjusted accordingly.
Segmenting
--split_method Method used for generating splits.(Default: PySceneDetect)
Options: `pyscene`, `aom_keyframes`
`pyscene` - PyScenedetect, content based scenedetection
with threshold.
`aom_keyframes` - using stat file of 1 pass of aomenc encode
to get exact place where encoder will place new keyframes.
-tr --threshold PySceneDetect threshold for scene detection Default: 50
-s --scenes Path to file with scenes timestamps.
If given `0` spliting will be ignored
If file not exist, new will be generated in current folder
First run to generate stamps, all next reuse it.
Example: "-s scenes.csv"
-xs --extra_split Adding extra splits if frame distance beetween splits bigger than
given value. Split only on keyframes. Works with/without PySceneDetect
Example: 1000 frames video with single scene,
-xs 200 will try to add splits at keyframes
that closest to 200,400,600,800.
Dark scenes boosting
--boost Enable experimental CQ boosting for dark scenes.
Aomenc/VPX only. See 1.7 release notes.
-br --boost_range CQ limit for boosting. CQ can't get lower than this value.
-bl --boost_limit CQ range for boosting. Delta for which CQ can be changed
Target VMAF
--vmaf_target Vmaf value to target. Supported for all encoders(Exception:VVC).
Best works in range 85-97.
When using this mode specify full encoding options.
Encoding options must include quantizer based mode,
and some quantizer option provided. (This value got replaced)
`--crf`,`--cq-level`,`--quantizer` etc
--min_q, --max_q Min,Max Q values limits for Target VMAF
If not set by user, encoder default will be used.
--vmaf Calculate vmaf after encode is done.
showing vmaf values for all frames,
mean, 1,25,75 percentile.
--vmaf_plots Make plots for target_vmaf search decisions
(Exception: early skips)
Saved in temp folder
--vmaf_path Custom path to libvmaf models.
example: --vmaf_path "vmaf_v0.6.1.pkl"
Recomended to place both files in encoding folder
(`vmaf_v0.6.1.pkl` and `vmaf_v0.6.1.pkl.model`)
(Required if vmaf calculation doesn't work by default)
--vmaf_res Resolution scaling for vmaf calculation,
vmaf_v0.6.1.pkl is 1920x1080 (by default),
vmaf_4k_v0.6.1.pkl is 3840x2160 (don't forget about vmaf_path)
--vmaf_steps Number of probes for interpolation.
Must be bigger than 3. Optimal is 4-6 probes. Default: 4
--probe_framerate Setting framerate for vmaf probes (Default: 4)
--n_threads Limit number of threads that used for vmaf calculation
Example: --n_threads 12
(Required if VMAF calculation gives error on high core counts)
Main Features
Spliting video by scenes for parallel encoding because AV1 encoders are currently not good at multithreading, encoding is limited to single or couple of threads at the same time.
- PySceneDetect used for spliting video by scenes and running multiple encoders.
- Fastest way to encode AV1 without losing quality, as fast as many CPU cores you have :).
- Target VMAF mode. Targeting end result visual quality.
- Resuming encoding without loss of encoded progress.
- Simple and clean console look.
- Automatic detection of the number of workers the host can handle.
- Building encoding queue with bigger files first, minimizing waiting for the last scene to encode.
- Both video and audio transcoding with FFmpeg.
- Logging of progress of all encoders.
- "Boosting" quality of dark scenes based on their brightness.
Install
-
Prerequisites:
- Install Python3
When installing under Windows, select the optionadd Python to PATH
in the installer - Install FFmpeg
- Install Python3
-
Encoder of choice:
- Install AOMENC
- Install rav1e
- Install SVT-AV1
- Install vpx VP9, VP8 encoding
- Install VTM VVC encoding test model
-
With a package manager:
-
Manually:
- Clone Repo or Download from Releases
python setup.py install
-
Also: On Ubuntu systems packages
python3-opencv
andlibsm6
are required
I have no money
Bitcoin - 1gU9aQ2qqoQPuvop2jqC68JKZh5cyCivG