mirror of
https://github.com/master-of-zen/Av1an.git
synced 2024-11-25 10:40:51 +00:00
213 lines
6.6 KiB
Python
213 lines
6.6 KiB
Python
#!/bin/env python
|
|
|
|
from math import isnan
|
|
from math import log as ln
|
|
|
|
import subprocess
|
|
from subprocess import STDOUT, PIPE
|
|
from .target_quality import make_pipes, vmaf_probe, transform_vmaf, weighted_search
|
|
from Av1an.arg_parse import Args
|
|
|
|
import matplotlib
|
|
from matplotlib import pyplot as plt
|
|
|
|
import numpy as np
|
|
from scipy import interpolate
|
|
|
|
from Av1an.bar import process_pipe
|
|
from Chunks.chunk import Chunk
|
|
from Av1an.commandtypes import CommandPair, Command
|
|
from Av1an.logger import log
|
|
|
|
|
|
def per_shot_target_quality_routine(args: Args, chunk: Chunk):
|
|
"""
|
|
Applies per_shot_target_quality to this chunk. Determines what the cq value should be and sets the
|
|
per_shot_target_quality_cq for this chunk
|
|
|
|
:param args: the Args
|
|
:param chunk: the Chunk
|
|
:return: None
|
|
"""
|
|
chunk.per_shot_target_quality_cq = per_shot_target_quality(chunk, args)
|
|
|
|
|
|
def get_target_q(scores, target_quality):
|
|
"""
|
|
Interpolating scores to get Q closest to target
|
|
Interpolation type for 2 probes changes to linear
|
|
"""
|
|
x = [x[1] for x in sorted(scores)]
|
|
y = [float(x[0]) for x in sorted(scores)]
|
|
|
|
if len(x) > 2:
|
|
interpolation = 'quadratic'
|
|
else:
|
|
interpolation = 'linear'
|
|
f = interpolate.interp1d(x, y, kind=interpolation)
|
|
xnew = np.linspace(min(x), max(x), max(x) - min(x))
|
|
tl = list(zip(xnew, f(xnew)))
|
|
q = min(tl, key=lambda l: abs(l[1] - target_quality))
|
|
|
|
return int(q[0]), round(q[1], 3)
|
|
|
|
|
|
def interpolate_data(vmaf_cq: list, target_quality):
|
|
x = [x[1] for x in sorted(vmaf_cq)]
|
|
y = [float(x[0]) for x in sorted(vmaf_cq)]
|
|
|
|
# Interpolate data
|
|
f = interpolate.interp1d(x, y, kind='quadratic')
|
|
xnew = np.linspace(min(x), max(x), max(x) - min(x))
|
|
|
|
# Getting value closest to target
|
|
tl = list(zip(xnew, f(xnew)))
|
|
target_quality_cq = min(tl, key=lambda l: abs(l[1] - target_quality))
|
|
return target_quality_cq, tl, f, xnew
|
|
|
|
|
|
def plot_probes(args, vmaf_cq, chunk: Chunk, frames):
|
|
# Saving plot of vmaf calculation
|
|
|
|
x = [x[1] for x in sorted(vmaf_cq)]
|
|
y = [float(x[0]) for x in sorted(vmaf_cq)]
|
|
|
|
cq, tl, f, xnew = interpolate_data(vmaf_cq, args.target_quality)
|
|
matplotlib.use('agg')
|
|
plt.ioff()
|
|
plt.plot(xnew, f(xnew), color='tab:blue', alpha=1)
|
|
plt.plot(x, y, 'p', color='tab:green', alpha=1)
|
|
plt.plot(cq[0], cq[1], 'o', color='red', alpha=1)
|
|
plt.grid(True)
|
|
plt.xlim(args.min_q, args.max_q)
|
|
vmafs = [int(x[1]) for x in tl if isinstance(x[1], float) and not isnan(x[1])]
|
|
plt.ylim(min(vmafs), max(vmafs) + 1)
|
|
plt.ylabel('VMAF')
|
|
plt.title(f'Chunk: {chunk.name}, Frames: {frames}')
|
|
plt.xticks(np.arange(args.min_q, args.max_q + 1, 1.0))
|
|
temp = args.temp / chunk.name
|
|
plt.savefig(f'{temp}.png', dpi=200, format='png')
|
|
plt.close()
|
|
|
|
|
|
def per_shot_target_quality(chunk: Chunk, args: Args):
|
|
vmaf_cq = []
|
|
frames = chunk.frames
|
|
q_list = []
|
|
score = 0
|
|
|
|
# Make middle probe
|
|
middle_point = (args.min_q + args.max_q) // 2
|
|
q_list.append(middle_point)
|
|
last_q = middle_point
|
|
|
|
score = vmaf_probe(chunk, last_q, args)
|
|
vmaf_cq.append((score, last_q))
|
|
|
|
if args.probes < 3:
|
|
#Use Euler's method with known relation between cq and vmaf
|
|
vmaf_cq_deriv = -0.18
|
|
## Formula -ln(1-score/100) = vmaf_cq_deriv*last_q + constant
|
|
#constant = -ln(1-score/100) - vmaf_cq_deriv*last_q
|
|
## Formula -ln(1-args.vmaf_target/100) = vmaf_cq_deriv*cq + constant
|
|
#cq = (-ln(1-args.vmaf_target/100) - constant)/vmaf_cq_deriv
|
|
next_q = int(round(last_q + (transform_vmaf(args.target_quality) - transform_vmaf(score))/vmaf_cq_deriv))
|
|
|
|
#Clamp
|
|
if next_q < args.min_q:
|
|
next_q = args.min_q
|
|
if args.max_q < next_q:
|
|
next_q = args.max_q
|
|
|
|
#Single probe cq guess or exit to avoid divide by zero
|
|
if args.probes == 1 or next_q == last_q:
|
|
return next_q
|
|
|
|
#Second probe at guessed value
|
|
score_2 = vmaf_probe(chunk, next_q, args)
|
|
|
|
#Calculate slope
|
|
vmaf_cq_deriv = (transform_vmaf(score_2) - transform_vmaf(score)) / (next_q-last_q)
|
|
|
|
#Same deal different slope
|
|
next_q = int(round(next_q+(transform_vmaf(args.target_quality)-transform_vmaf(score_2))/vmaf_cq_deriv))
|
|
|
|
#Clamp
|
|
if next_q < args.min_q:
|
|
next_q = args.min_q
|
|
if args.max_q < next_q:
|
|
next_q = args.max_q
|
|
|
|
return next_q
|
|
|
|
# Initialize search boundary
|
|
vmaf_lower = score
|
|
vmaf_upper = score
|
|
vmaf_cq_lower = last_q
|
|
vmaf_cq_upper = last_q
|
|
|
|
# Branch
|
|
if score < args.target_quality:
|
|
next_q = args.min_q
|
|
q_list.append(args.min_q)
|
|
else:
|
|
next_q = args.max_q
|
|
q_list.append(args.max_q)
|
|
|
|
# Edge case check
|
|
score = vmaf_probe(chunk, next_q, args)
|
|
vmaf_cq.append((score, next_q))
|
|
|
|
if next_q == args.min_q and score < args.target_quality:
|
|
log(f"Chunk: {chunk.name}, Fr: {frames}\n"
|
|
f"Q: {sorted([x[1] for x in vmaf_cq])}, Early Skip Low CQ\n"
|
|
f"Vmaf: {sorted([x[0] for x in vmaf_cq], reverse=True)}\n"
|
|
f"Target Q: {vmaf_cq[-1][1]} Vmaf: {vmaf_cq[-1][0]}\n\n")
|
|
return next_q
|
|
|
|
elif next_q == args.max_q and score > args.target_quality:
|
|
log(f"Chunk: {chunk.name}, Fr: {frames}\n"
|
|
f"Q: {sorted([x[1] for x in vmaf_cq])}, Early Skip High CQ\n"
|
|
f"Vmaf: {sorted([x[0] for x in vmaf_cq], reverse=True)}\n"
|
|
f"Target Q: {vmaf_cq[-1][1]} Vmaf: {vmaf_cq[-1][0]}\n\n")
|
|
return next_q
|
|
|
|
# Set boundary
|
|
if score < args.target_quality:
|
|
vmaf_lower = score
|
|
vmaf_cq_lower = next_q
|
|
else:
|
|
vmaf_upper = score
|
|
vmaf_cq_upper = next_q
|
|
|
|
# VMAF search
|
|
for _ in range(args.probes - 2):
|
|
new_point = weighted_search(vmaf_cq_lower, vmaf_lower, vmaf_cq_upper, vmaf_upper, args.target_quality)
|
|
if new_point in [x[1] for x in vmaf_cq]:
|
|
break
|
|
|
|
q_list.append(new_point)
|
|
score = vmaf_probe(chunk, new_point, args)
|
|
vmaf_cq.append((score, new_point))
|
|
|
|
# Update boundary
|
|
if score < args.target_quality:
|
|
vmaf_lower = score
|
|
vmaf_cq_lower = new_point
|
|
else:
|
|
vmaf_upper = score
|
|
vmaf_cq_upper = new_point
|
|
|
|
q, q_vmaf = get_target_q(vmaf_cq, args.target_quality)
|
|
|
|
log(f'Chunk: {chunk.name}, Fr: {frames}\n'
|
|
f'Q: {sorted([x[1] for x in vmaf_cq])}\n'
|
|
f'Vmaf: {sorted([x[0] for x in vmaf_cq], reverse=True)}\n'
|
|
f'Target Q: {q} Vmaf: {q_vmaf}\n\n')
|
|
|
|
# Plot Probes
|
|
if args.vmaf_plots and len(vmaf_cq) > 3:
|
|
plot_probes(args, vmaf_cq, chunk, frames)
|
|
|
|
return q
|
|
|