mirror of
https://github.com/master-of-zen/Av1an.git
synced 2024-11-25 02:29:40 +00:00
349 lines
11 KiB
Python
349 lines
11 KiB
Python
#!/bin/env python
|
|
|
|
from math import isnan
|
|
from math import log as ln
|
|
|
|
import subprocess
|
|
from subprocess import STDOUT, PIPE
|
|
|
|
import matplotlib
|
|
from matplotlib import pyplot as plt
|
|
|
|
import numpy as np
|
|
from scipy import interpolate
|
|
|
|
from Av1an.arg_parse import Args
|
|
from Av1an.bar import process_pipe
|
|
from Chunks.chunk import Chunk
|
|
from Av1an.commandtypes import CommandPair, Command
|
|
from Av1an.logger import log
|
|
from .vmaf import call_vmaf, read_vmaf_json
|
|
|
|
|
|
def target_vmaf_routine(args: Args, chunk: Chunk):
|
|
"""
|
|
Applies target vmaf to this chunk. Determines what the cq value should be and sets the
|
|
vmaf_target_cq for this chunk
|
|
|
|
:param args: the Args
|
|
:param chunk: the Chunk
|
|
:return: None
|
|
"""
|
|
chunk.vmaf_target_cq = target_vmaf(chunk, args)
|
|
|
|
|
|
def gen_probes_names(chunk: Chunk, q):
|
|
"""Make name of vmaf probe
|
|
"""
|
|
return chunk.fake_input_path.with_name(f'v_{q}{chunk.name}').with_suffix('.ivf')
|
|
|
|
|
|
def probe_cmd(chunk: Chunk, q, ffmpeg_pipe, encoder, vmaf_rate) -> CommandPair:
|
|
"""
|
|
Generate and return commands for probes at set Q values
|
|
These are specifically not the commands that are generated
|
|
by the user or encoder defaults, since these
|
|
should be faster than the actual encoding commands.
|
|
These should not be moved into encoder classes at this point.
|
|
"""
|
|
pipe = ['ffmpeg', '-y', '-hide_banner', '-loglevel', 'error', '-i', '-', '-vf', f'select=not(mod(n\\,{vmaf_rate}))',
|
|
*ffmpeg_pipe]
|
|
|
|
probe_name = gen_probes_names(chunk, q).with_suffix('.ivf').as_posix()
|
|
|
|
if encoder == 'aom':
|
|
params = ['aomenc', '--passes=1', '--threads=8',
|
|
'--end-usage=q', '--cpu-used=6', f'--cq-level={q}']
|
|
cmd = CommandPair(pipe, [*params, '-o', probe_name, '-'])
|
|
|
|
elif encoder == 'x265':
|
|
params = ['x265', '--log-level', '0', '--no-progress',
|
|
'--y4m', '--preset', 'faster', '--crf', f'{q}']
|
|
cmd = CommandPair(pipe, [*params, '-o', probe_name, '-'])
|
|
|
|
elif encoder == 'rav1e':
|
|
params = ['rav1e', '-s', '10', '--tiles', '8', '--quantizer', f'{q}']
|
|
cmd = CommandPair(pipe, [*params, '-o', probe_name, '-'])
|
|
|
|
elif encoder == 'vpx':
|
|
params = ['vpxenc', '--passes=1', '--pass=1', '--codec=vp9',
|
|
'--threads=8', '--cpu-used=9', '--end-usage=q',
|
|
f'--cq-level={q}']
|
|
cmd = CommandPair(pipe, [*params, '-o', probe_name, '-'])
|
|
|
|
elif encoder == 'svt_av1':
|
|
params = ['SvtAv1EncApp', '-i', 'stdin',
|
|
'--preset', '8', '--rc', '0', '--qp', f'{q}']
|
|
cmd = CommandPair(pipe, [*params, '-b', probe_name, '-'])
|
|
|
|
elif encoder == 'svt_vp9':
|
|
params = ['SvtVp9EncApp', '-i', 'stdin',
|
|
'-enc-mode', '8', '-q', f'{q}']
|
|
# TODO: pipe needs to output rawvideo
|
|
cmd = CommandPair(pipe, [*params, '-b', probe_name, '-'])
|
|
|
|
elif encoder == 'x264':
|
|
params = ['x264', '--log-level', 'error', '--demuxer', 'y4m',
|
|
'-', '--no-progress', '--preset', 'slow', '--crf',
|
|
f'{q}']
|
|
cmd = CommandPair(pipe, [*params, '-o', probe_name, '-'])
|
|
|
|
return cmd
|
|
|
|
|
|
def make_pipes(ffmpeg_gen_cmd: Command, command: CommandPair):
|
|
|
|
ffmpeg_gen_pipe = subprocess.Popen(ffmpeg_gen_cmd, stdout=PIPE, stderr=STDOUT)
|
|
ffmpeg_pipe = subprocess.Popen(command[0], stdin=ffmpeg_gen_pipe.stdout, stdout=PIPE, stderr=STDOUT)
|
|
pipe = subprocess.Popen(command[1], stdin=ffmpeg_pipe.stdout, stdout=PIPE,
|
|
stderr=STDOUT,
|
|
universal_newlines=True)
|
|
|
|
return pipe
|
|
|
|
|
|
def get_target_q(scores, vmaf_target):
|
|
"""
|
|
Interpolating scores to get Q closest to target VMAF
|
|
Interpolation type for 2 probes changes to linear
|
|
"""
|
|
x = [x[1] for x in sorted(scores)]
|
|
y = [float(x[0]) for x in sorted(scores)]
|
|
|
|
if len(x) > 2:
|
|
interpolation = 'quadratic'
|
|
else:
|
|
interpolation = 'linear'
|
|
f = interpolate.interp1d(x, y, kind=interpolation)
|
|
xnew = np.linspace(min(x), max(x), max(x) - min(x))
|
|
tl = list(zip(xnew, f(xnew)))
|
|
q = min(tl, key=lambda l: abs(l[1] - vmaf_target))
|
|
|
|
return int(q[0]), round(q[1], 3)
|
|
|
|
|
|
def interpolate_data(vmaf_cq: list, vmaf_target):
|
|
x = [x[1] for x in sorted(vmaf_cq)]
|
|
y = [float(x[0]) for x in sorted(vmaf_cq)]
|
|
|
|
# Interpolate data
|
|
f = interpolate.interp1d(x, y, kind='quadratic')
|
|
xnew = np.linspace(min(x), max(x), max(x) - min(x))
|
|
|
|
# Getting value closest to target
|
|
tl = list(zip(xnew, f(xnew)))
|
|
vmaf_target_cq = min(tl, key=lambda l: abs(l[1] - vmaf_target))
|
|
return vmaf_target_cq, tl, f, xnew
|
|
|
|
|
|
def plot_probes(args, vmaf_cq, chunk: Chunk, frames):
|
|
# Saving plot of vmaf calculation
|
|
|
|
x = [x[1] for x in sorted(vmaf_cq)]
|
|
y = [float(x[0]) for x in sorted(vmaf_cq)]
|
|
|
|
cq, tl, f, xnew = interpolate_data(vmaf_cq, args.vmaf_target)
|
|
matplotlib.use('agg')
|
|
plt.ioff()
|
|
plt.plot(xnew, f(xnew), color='tab:blue', alpha=1)
|
|
plt.plot(x, y, 'p', color='tab:green', alpha=1)
|
|
plt.plot(cq[0], cq[1], 'o', color='red', alpha=1)
|
|
plt.grid(True)
|
|
plt.xlim(args.min_q, args.max_q)
|
|
vmafs = [int(x[1]) for x in tl if isinstance(x[1], float) and not isnan(x[1])]
|
|
plt.ylim(min(vmafs), max(vmafs) + 1)
|
|
plt.ylabel('VMAF')
|
|
plt.title(f'Chunk: {chunk.name}, Frames: {frames}')
|
|
plt.xticks(np.arange(args.min_q, args.max_q + 1, 1.0))
|
|
temp = args.temp / chunk.name
|
|
plt.savefig(f'{temp}.png', dpi=200, format='png')
|
|
plt.close()
|
|
|
|
|
|
def vmaf_probe(chunk: Chunk, q, args: Args):
|
|
"""
|
|
Make encoding probe to get VMAF that Q returns
|
|
|
|
:param chunk: the Chunk
|
|
:param q: Value to make probe
|
|
:param args: the Args
|
|
:return :
|
|
"""
|
|
|
|
|
|
cmd = probe_cmd(chunk, q, args.ffmpeg_pipe, args.encoder, args.vmaf_rate)
|
|
pipe = make_pipes(chunk.ffmpeg_gen_cmd, cmd)
|
|
process_pipe(pipe)
|
|
|
|
file = call_vmaf(chunk, gen_probes_names(chunk, q), args.n_threads, args.vmaf_path, args.vmaf_res, vmaf_filter=args.vmaf_filter,
|
|
vmaf_rate=args.vmaf_rate)
|
|
score = read_vmaf_json(file, 20)
|
|
|
|
return score
|
|
|
|
|
|
def get_closest(q_list, q, positive=True):
|
|
"""
|
|
Returns closest value from the list, ascending or descending
|
|
|
|
:param q_list: list of q values that been already used
|
|
:param q:
|
|
:param positive: search direction, positive - only values bigger than q
|
|
:return: q value from list
|
|
"""
|
|
if positive:
|
|
q_list = [x for x in q_list if x > q]
|
|
else:
|
|
q_list = [x for x in q_list if x < q]
|
|
|
|
return min(q_list, key=lambda x: abs(x - q))
|
|
|
|
def transform_vmaf(vmaf):
|
|
if vmaf<99.99:
|
|
return -ln(1-vmaf/100)
|
|
else:
|
|
#return -ln(1-99.99/100)
|
|
return 9.210340371976184
|
|
|
|
def weighted_search(num1, vmaf1, num2, vmaf2, target):
|
|
"""
|
|
Returns weighted value closest to searched
|
|
|
|
:param num1: Q of first probe
|
|
:param vmaf1: VMAF of first probe
|
|
:param num2: Q of second probe
|
|
:param vmaf2: VMAF of first probe
|
|
:param target: VMAF target
|
|
:return: Q for new probe
|
|
"""
|
|
|
|
dif1 = abs(transform_vmaf(target) - transform_vmaf(vmaf2))
|
|
dif2 = abs(transform_vmaf(target) - transform_vmaf(vmaf1))
|
|
|
|
tot = dif1 + dif2
|
|
|
|
new_point = int(round(num1 * (dif1 / tot) + (num2 * (dif2 / tot))))
|
|
return new_point
|
|
|
|
|
|
def target_vmaf(chunk: Chunk, args: Args):
|
|
vmaf_cq = []
|
|
frames = chunk.frames
|
|
q_list = []
|
|
score = 0
|
|
|
|
# Make middle probe
|
|
middle_point = (args.min_q + args.max_q) // 2
|
|
q_list.append(middle_point)
|
|
last_q = middle_point
|
|
|
|
score = vmaf_probe(chunk, last_q, args)
|
|
vmaf_cq.append((score, last_q))
|
|
|
|
if args.vmaf_steps < 3:
|
|
#Use Euler's method with known relation between cq and vmaf
|
|
vmaf_cq_deriv = -0.18
|
|
## Formula -ln(1-score/100) = vmaf_cq_deriv*last_q + constant
|
|
#constant = -ln(1-score/100) - vmaf_cq_deriv*last_q
|
|
## Formula -ln(1-args.vmaf_target/100) = vmaf_cq_deriv*cq + constant
|
|
#cq = (-ln(1-args.vmaf_target/100) - constant)/vmaf_cq_deriv
|
|
next_q = int(round(last_q + (transform_vmaf(args.vmaf_target)-transform_vmaf(score))/vmaf_cq_deriv))
|
|
|
|
#Clamp
|
|
if next_q < args.min_q:
|
|
next_q = args.min_q
|
|
if args.max_q < next_q:
|
|
next_q = args.max_q
|
|
|
|
#Single probe cq guess or exit to avoid divide by zero
|
|
if args.vmaf_steps == 1 or next_q == last_q:
|
|
return next_q
|
|
|
|
#Second probe at guessed value
|
|
score_2 = vmaf_probe(chunk, next_q, args)
|
|
|
|
#Calculate slope
|
|
vmaf_cq_deriv = (transform_vmaf(score_2)-transform_vmaf(score))/(next_q-last_q)
|
|
|
|
#Same deal different slope
|
|
next_q = int(round(next_q+(transform_vmaf(args.vmaf_target)-transform_vmaf(score_2))/vmaf_cq_deriv))
|
|
|
|
#Clamp
|
|
if next_q < args.min_q:
|
|
next_q = args.min_q
|
|
if args.max_q < next_q:
|
|
next_q = args.max_q
|
|
|
|
return next_q
|
|
|
|
# Initialize search boundary
|
|
vmaf_lower = score
|
|
vmaf_upper = score
|
|
vmaf_cq_lower = last_q
|
|
vmaf_cq_upper = last_q
|
|
|
|
# Branch
|
|
if score < args.vmaf_target:
|
|
next_q = args.min_q
|
|
q_list.append(args.min_q)
|
|
else:
|
|
next_q = args.max_q
|
|
q_list.append(args.max_q)
|
|
|
|
# Edge case check
|
|
score = vmaf_probe(chunk, next_q, args)
|
|
vmaf_cq.append((score, next_q))
|
|
|
|
if next_q == args.min_q and score < args.vmaf_target:
|
|
log(f"Chunk: {chunk.name}, Fr: {frames}\n"
|
|
f"Q: {sorted([x[1] for x in vmaf_cq])}, Early Skip Low CQ\n"
|
|
f"Vmaf: {sorted([x[0] for x in vmaf_cq], reverse=True)}\n"
|
|
f"Target Q: {vmaf_cq[-1][1]} Vmaf: {vmaf_cq[-1][0]}\n\n")
|
|
return next_q
|
|
|
|
elif next_q == args.max_q and score > args.vmaf_target:
|
|
log(f"Chunk: {chunk.name}, Fr: {frames}\n"
|
|
f"Q: {sorted([x[1] for x in vmaf_cq])}, Early Skip High CQ\n"
|
|
f"Vmaf: {sorted([x[0] for x in vmaf_cq], reverse=True)}\n"
|
|
f"Target Q: {vmaf_cq[-1][1]} Vmaf: {vmaf_cq[-1][0]}\n\n")
|
|
return next_q
|
|
|
|
# Set boundary
|
|
if score < args.vmaf_target:
|
|
vmaf_lower = score
|
|
vmaf_cq_lower = next_q
|
|
else:
|
|
vmaf_upper = score
|
|
vmaf_cq_upper = next_q
|
|
|
|
# VMAF search
|
|
for _ in range(args.vmaf_steps - 2):
|
|
new_point = weighted_search(vmaf_cq_lower, vmaf_lower, vmaf_cq_upper, vmaf_upper, args.vmaf_target)
|
|
if new_point in [x[1] for x in vmaf_cq]:
|
|
break
|
|
|
|
q_list.append(new_point)
|
|
score = vmaf_probe(chunk, new_point, args)
|
|
vmaf_cq.append((score, new_point))
|
|
|
|
# Update boundary
|
|
if score < args.vmaf_target:
|
|
vmaf_lower = score
|
|
vmaf_cq_lower = new_point
|
|
else:
|
|
vmaf_upper = score
|
|
vmaf_cq_upper = new_point
|
|
|
|
q, q_vmaf = get_target_q(vmaf_cq, args.vmaf_target)
|
|
|
|
log(f'Chunk: {chunk.name}, Fr: {frames}\n'
|
|
f'Q: {sorted([x[1] for x in vmaf_cq])}\n'
|
|
f'Vmaf: {sorted([x[0] for x in vmaf_cq], reverse=True)}\n'
|
|
f'Target Q: {q} Vmaf: {q_vmaf}\n\n')
|
|
|
|
# Plot Probes
|
|
if args.vmaf_plots and len(vmaf_cq) > 3:
|
|
plot_probes(args, vmaf_cq, chunk, frames)
|
|
|
|
return q
|
|
|